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ABSTRACT

Previous authors have postulated that faults are related to each other and
testers have tried to exploit the effect. However, the evidence and applications
have been largely anecdotal. This thesis uses an analytical derivation of software
failure regions to develop a quantitative metric of the relationship of one fault to an-
other. This metric is then applied in an empirical study of a population of failure re-
gions derived from faults used in a previous experiment. The failure regions were
analyzed for clustering behavior using graph theory techniques. The goal of this
study is to be able to use information about known faults in a program as a means
of finding other faults in the same program. This study provides strong evidence
that failure regions have a tendency to form clusters. Further, two specific charac-
teristics of failure regions that lead to cluster formation are identified: shared
bounding conditions (the Identical dimension) and shared variables that appear in
different contexts (the Coincidental dimension). The nature of the clusters formed
by these two dimensions are markedly different. The Identical dimension clusters
are small, isolated, and strongly connected. The Coincidentai dimension clusters
are larger and more loosely connected. Software testing implications of failure re-
gion clustering behavior are discussed.
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. INTRODUCTION

A. MOTIVATION FOR THIS STUDY

On July 10, 1991 an article in the Wall Street Journal blamed major telephone
outages on a software failure. Three incorrectly set flag bits resulted in the omis-
sion of congestion control algorithms. DSC Communications Corp., the manufac-
turer of the faulty signaling system, reported that

... Pacific Bell ... had requested software changes involving perhaps three
or four lines of code. Engineers decided that because the change was
minor, the massive program didn’t need to undergo the rigorous 13-week
test that most software is put through before it is shipped to customers.
(Wall Street Journal, 1991)

Engineers were aiso unable to explain why the problems didn’t appear until several
weeks after installation, and then only in two of the five Bell companies where the
revised software was installed.

The decision by the engineers to forego testing because the changes were
“minor” indicates a misunderstanding about how various parts of the program inter-
act with each other. Their confusion about the delayed and selective appearances
of the faults points to a lack of understanding about the conditions that had to be
met for the fault to produce a failure. These problems clearly show the need for a
method of projecting how changes will affect the performance of a program and
how to deal with the conditions that cause those effects.

As general-purpose computing systems perform more and more sophisticated
functions, the software necessarily becomes larger and more complex. As soft-
ware size and complexity grow linearly, software testing and debugging become
exponentially harder. In fact, testing consumes as much as half of the budget for
the development of most major software systems, while error correction and spec-
ification revision account for up to 90% of software life-cycie costs after the soft-
ware has been marketed (Alberts, 1976).




Unfortunately, extensive software testing is frequently necessary in spite of its
expense. Many computer applications require fault-free, or at least fault-tolerant,
operation. Examples include aircraft control and medical systems. In applications
such as these, computer failure may result in a disaster, such as the loss of life or
capital equipment. Even for systems that are less critical, such as the telephone
example described above, failure can cause a significant loss of time, money, or
productivity.

The need for reliable computers can only be expected to grow. This implies the
need for reliable software since software failures are responsible for the majority of
failures in computing systems that have fault tolerant hardware. Careful specifica-
tion, design, and testing are the keys to producing reliable software. This thesis
deals with the area of software testing.

The following sections briefly outline the background for this study, the hypoth-
esis of the study, and a description of the experiment that was used to test the
hypothesis.

B. BACKGROUND

The ANSI/IEEE standard definition of a fault is an accidental condition that
may cause a program to fail. Failure means that a program does not perform its
required function. This may mean that the program does not execute or that it exe-
cutes and produces an error. An error is a discrepancy between a computed value
or condition and the true, specified or theoretically correct value or condition. (Glos-
sary, 1983)

A subset of the program domain (i.e., input space) is associated with every
fault in a program. Sets of bounds delimit this subset, one set corresponding to
each variable in the domain. These bounds identify the values of the program vari-
ables that will result in program failure due to that specific fault. Every variable must
be within its specified bounds before that fault will produce a failure. Ammann and
Knight called the subset of the domain assnaciated with a fault its failure region
(Ammann and Knight, 1988). They determined failure regions empirically, by repet-
itive probing, rather than analytically.



Boichoz described three conditions that are required for a fault to produce a
failure. First, all the conditions for the fault to be executed must be met. Second,
the fault must be executed in a way that produces an error. Finally, the error must
be propagated to a final result without being masked by subsequent processing.
The failure region of a fault is the subset of the program domain that allows the fault
to satisfy all of these conditions simultaneously (Bolchoz, 1990).

C. HYPOTHESIS

Bolchoz's study considered how to identify the failure regions of isolated faults.
He did not consider relationships between taults. Elements of his analysis, how-
ever, suggested that failure regions may exhibit a relationship that links faults to
each other. Failure regions are derived directly from their associated faults. There-
fore, a relationship between failure regions would imply a relationship between
their associated faults. If such a relationship exists, then the failure region of a
known fault may be useful in deriving information about other failure regions. This
information may, in turn, may lead to the discovery of other faults.

The primary goal of this research was to develop a technique for empirically
examining failure regions to determine what relationships exist between failure
regions. A secondary goal was to characterize the relationships. The hope is that
these relationships may be useful in fault-detection applications.

Some difficulties arose during the development of the analysis technique. The
first was that there was no statistical information about the behavior of failure
regions. Which features of tailure regions should be used in characterizing their
behavior? What type of distribution does their behavior exhibit?

A second problem was the dimensionality of failure regions. A failure region
has a separate dimension associated with each program variable. Failure regions
for practical software can easily have several hundred dimensions. All of these
dimensions are not necessarily orthogonal.

A third difficulty was how to quantify similarities between failure regions. Ideas
such as Euclidean distance have no meaning because of the heterogeneity of the
failure regions. How can the bounds of the variables in two failure regions be used




to measure their “closeness”? How can the similarities of one pair of failure
regions be compared relatively to the similarities of another pair when the two pairs
are completely dissimilar?

In order to make the problem tractable, it was assumed that the failure regions
would have Guassian distributed behavior. Additionally, it was assumed that all
variables affected failure region behavior in the same way. This allowed relation-
ships between failure regions to be identified by ithe number of variables their
bounds had in common.

D. DESCRIPTION OF THE EXPERIMENT

The empirical data for this study come from a set of programs published in a
previous study. Shimeall and Leveson wrote a functional specification for a combat
simulation program. Eight pairs of undergraduate students independently wrote
programs based on this specification. The eight programs were then extensively
tested (Shimeall and Leveson, 1991). The failure regions for the known faults in
these programs have been identified using Bolchoz's method.

The problem is analyzed with graph theory techniques. Failure regions are
modeled as nodes in a series of graphs. The relationships between the failure
regions are modeled as edges. Edge weights are developed based on how many
variables two failure regions share as well as the context of the variables within the
failure regions. The single-link clustering method is used to study how failure
regions tend to form clusters (Jain and Dubes, 1988, p. 70). The clustering tenden-
cies provide insight into which types of failure region-variable behaviors may pro-
vide useful information for fault detection.

E. OVERVIEW OF THE THESIS

Chapter |l gives a more extensive literature review of software testing in gen-
eral and failure region analysis in particular. Chapter Ill describes how the data
were converted into graphs and discusses the details of graph theory and cluster
analysis that apply to this study. Chapter IV describes the methods of analysis and
the results of the analyses. Finally, Chapter V summarizes the conclusions that can
be drawn from the results and offers directions for further research.




Il. BACKGROUND AND RELATED WORK

This chapter reviews software testing definitions and methods for dealing with
software failures. It then discusses theories of software testing, concentrating on
models that are germane to this work. Next it presents previous work in the area of
failure regions analysis. Finally, it reviews the basis for the cluster analysis
techniques that are used in the experimental portion of this study.

A. SOFTWARE TESTING

1. Faults and Failures

Software developers realized long ago that virtually ail software is fauity.
However, faulty programs do not always fail. While this may be fortunate from the
standpoint of the user, it is troublesome from the standpoint of the tester. The
telephone system example cited in the first chapter demonstrated that a program
may run correctly for an indefinite period of time before it fails. It also showed that
just because a fault goes unnoticed it does not mean that the failure will be
insignificant. A great deal of money and productivity were no doubt forfeited by
customers who suffered the loss of their telephone service.

It software developers concede that their software contains faults and if
they desire to ensure that those faults do not result in software tailures, then the
question is how to deal with the faults. There are two possible approaches: either
they must find the faults and eliminate them or they must develop methods of
tolerating the faults. This thesis deals with the fault-elimination approach.

2. Software Fault Elimination
The goal of software fault elimination is to find every fault in the software
and remove it, thereby producing a fault-free program. There are numerous
methods of fault elimination. The literature on these is extensive and will not be
reviewed here. Myers (Myers, 1979) and Beizer (Beizer, 1990) both give excellent




surveys of these methods. The discussion here will concentrate on fault-based
testing.

a. Two Different Approaches to Software Testing

Myers claims that since software contains faults and since the purpose
of software testing is to eliminate faults, then the only successful test is one that
finds a software fault (Myers, 1979, pp. 4-7). In other words, if the program runs
correctly or: a given test, then that test failed. This approach requires a somewhat
destructive mentality; the tester is trying to break the program and he is
disappointed if he cannot. Many software testers have subscribed to this theory.

The difficulty with Myers’ theory is that there is no clear criterion for
termination of testing. Neither tests that succeed nor tests that fail under this theory
provide any information about either the presence or the absence of other faults in
the software.

Morell offers a more constructive theory of testing (Morell, 1990). The
difference in his approach is not so much in the tests that are run as in the
information that can be gleaned from the tests. Under this theory, a test that fails
by Myers’ definition may still yield valuable information about which faults
specifically cannot exist in the program. The advantage of this theory is that a
criterion for completion of testing is available. The tester specifies the faults that he
wishes to ensure are not present; he then tests to show that those faulits are not
present. The danger, of course, is that the tester may fail to specify faults that are,
in fact, present in the software.

Methods based on Myers’ theory have primarily been concerned with
establishing the necessary conditions for a fault to cause a failure. An example of
these conditions would be all-statements coverage. However, in order to ensure
that a fault causes a failure during testing, both the necessary and the sufficient
conditions must be met. The necessary conditions only guarantee that a fault will
be executed. The sufficient conditions, on the other hand, guarantee that if a fault
is executed then it will produce a failure. This is where Morell's theory offers




advancement over previous theories. The next section outlines a theory of test data
selection that aims at being both necessary and sufficient.

b. A Theory of Test Data Selection

Goodenough and Gerhart first presented the idea of selecting test
data that guarantee detection of faults. They called a test data set reliable if it
uncovered a given fault consistently and valid if it was capable of detecting every
error in the program. They called a test set complete if it was both reliable and valid.
They suggested using condition tables derived from the program specification for
selecting test data. (Goodenough and Gerhart, 1975)

Weyuker and Ostrand pointed out that while Goodenough and
Gerhart's theory provided valuable insight on the properties that test data should
have, it did not tell the tester how to find such data. In general, itis difficult to devise
tests that meet Goodenough and Gerhart's definition of completeness. Weyuker
and Ostrand suggested a more pragmatic goal for testing, namely, proving the
absence of specified faults rather than all faults. They proposed to do this by using
revealing subdomains. A revealing subdomain is a subset of a program’s input
domain that contains only inputs that are guaranteed to reveal a fault. In other
words, revealing subdomains provide the necessary and sufficient conditions for
producing failures from specified faults. (Weyuker and Ostrand, 1980)

Weyuker and Ostrand generated revealing subdomains by
intersecting two input domain partitions. The first partitioning was into sets that
caused a specific path or family of related paths to be executed. They called these
path domains. These partitions describe how the program actually treats the input
domain. The second partitioning was based on program specifications, algorithms,
and data structures. They called this the problem partition. These partitions
describe how the program should treat the input domain based on the desired
function of the program. The intersection of these two partitions produced sets that
were characterized by the conjunction of the path conditions and the problem
conditions. These are the sets they used for test data selection. Since ideally the




two partitions should agree, intersections where they do not agree are probably
fruitful places to search for failure producing inputs. (Weyuker and Ostrand, 1980)

Richardson and Clarke proposed a method similar to Weyuker and
Ostrand’s. They partitioned the input space into subdomains using information
from both the program’s specification and its implementation. They then proposed
using symbolic execution to determine if the impiementation agreed with the
specification. (Richardson and Clarke, 1981)

Richardson and Thompson developed the RELAY model of fauit
detection based on an earlier version of Morell's fault-based testing theory. A
potential failure is originated when a fault is executed. This is the necessary
condition for failure. The potential failure is then relayed through the program by
computational and data flow transfers until it is manifested as an output error
[failure]. The computational and data flow transfers are the sufficient conditions for
failure. The failure must be both originated and relayed or it will not be revealed.
Thus, this model provides a practical framework for selecting test data that are both
necessary and sufficient for guaranteeing fault detection. (Richardson and
Thompson, 1988)

c. Mutation Testing

The works of Morell and of Richardson and Thompson are adapted
from mutation testing (DeMillo, et al., 1978). The idea of mutation testing is
predicated on two assumptions. The first is the competent programmer
assumption; it is assumed that the software is only “slightly” incorrect. For example,
it is assumed that a numerical integration algorithm is not used in place of a
differentiation algorithm. Although the assumption seems reasonable, it cannot be
verified or for that matter even quantified. The second assumption of mutation
testing is the coupling effect; that is, that tests that detect simple fauits will also be
sensitive to more complex faults. This effect is further discussed in the cluster
analysis section below.

The basic method of mutation testing is to try to identify the classes of
faults that might exist in the software. Perhaps the designer indexed an array with




the wrong loop counter or the programmer substituted a Boolean OR for a Boolean
AND. Mutations of the program are generated from the identified classes of faults.
Test data are then sought that will distinguish the mutations from the original
program. Mutations that survive the testing are either functionally equivalent to the
original program or the test data are not sensitive enough to make the distinction.

d. Partition Testing

All the testing theories and methods that have been discussed here fall
under the general category of partition testing. The primary characteristic of
partition testing is that the program’s input domain is divided into subdomains. The
tester builds his test set by selecting elements from each subdomain. Partition
testing ranges from random testing to exhaustive testing. In the former, there is one
partition, namely, the entire input space. In the latter, there are as many partitions
as there are elements in the domain. Mutation testing is partition testing in that it
divides the domain into partitions that distinguish the various mutants.

Weyuker and Jeng examined partition testing strategies analyticalily.
They showed that, in general, arbitrary partitioning strategies may provide results
that are either better or worse than random strategies. (They used partitioned to
mean more than one subdomain.) They also showed that if an appropriate method
exists for refining partitions, then improvement of the performance of partitioning
strategies over random strategies can be guaranteed. While Weyuker and Jeng
present no specific strategy, their results suggest that refinement should be fault-
based, i.e., that partitions should be designed with particular faults in mind.
(Weyuker and Jeng, 1991)

In summary, most testing strategies guess at the nature of the faults
that might be present and then try to develop test sets to uncover the hypothesized
faults. This might be characterized as an outside-to-inside approach. Little study
has been done to determine how faults really behave. This study has the goal of
determining actual fault characteristics that may be useful in locating faults. This
might be termed more of an inside-to-outside approach to testing.




3. Fallure Regions

A subset of the program domain is associated with every fault in a
program. Sets of bounds delimit this subset, one set of bounds corresponding to
each of the variables in the domain. These bounds identify the values that the
program variables must assume in order for that specific fault to cause a program
failure. Every variable must be within its specified bounds before that fault will
produce a failure. Ammann and Knight called the subset of the domain associated
with a fault its failure region (Ammann and Knight, 1988).

Ammann and Knight used failure regions to develop an approach to
software fault tolerance called data diversity. They suggested that for many
program variables there is a set of values that will produce equivalent program
behavior. If a fault produces a failure and if there is an equivalent value for the
offending variable that lies outside the failure region, then failure can be avoided
by substituting the equivalent value. Data diversity is a fault-tolerance technique
rather than a fault-elimination technique. (Ammann and Knight, 1988)

Bolchoz developed an analytical method for identifying failure regions
(Bolchoz, 1990). He described three conditions that are required for a fault to
produce a failure. First, all the conditions for the fault to be reached must be met,
e.g. appropriate procedure calls and program branches. Second, the fault must be
executed in a way that produces an error or an erroneous intermediate result.
Finally, the error must be propagated to a final result without being masked by
subsequent processing. The failure region of a fault is the set of data values that
satisfy the conjunction of these three conditions. The difference between this
method and that of Weyuker and Ostrand is that this method identifies conditions
for execution of a specific fault that is already known to exist while their method
identifies conditions for where hypothesized faults are likely to exist. Shimeali, et
al., showed that, under certain assumptions, Bolchoz's method provides the
necessary and sufficient conditions for a known fault to produce a failure (Shimeall,
et al., 1991).
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Voas and Morell explored an idea similar to failure region analysis. They
called it propagation and infection analysis. They studied the sensitivity of
programs to faults by executing the programs rather than by examining the
program specification and implementation. They called the probability that a fault
will be executed on a randomly selected input the execution rate. The probability
that the fault will infect subsequent data states after the error occurs is the infection
rate and the probability that the fault will persist to manifest a program failure is the
propagation rate. They suggested empirical methods for estimating these rates.
They used the conjunction of these individual rates to predict the program’s failure
rate. (Voas and Morell, 1989)

Failure regions have been used to provide insight into the necessary and
sufficient conditions for revealing specific faults and for understanding how specific
faults behave in isolation. The study presented in this thesis is the first to collect
information on how faults or failure regions are related to each other. Failure
regions offer a mechanism for identifying common features among faults. Faults
that have similarities in their failure regions might be expected to exhibit similar
behaviors when ‘they cause a failure. This thesis explores the similarities and
differences between the failure regions of known faults in the same program with
the goal of better understanding fault behavior.

B. CLUSTER ANALYSIS

1. Definitions

Much scientific study is based on the classification of objects according to
perceived similarities. Cluster analysis is the study of how to build a formal basis
for this activity of classification that humans perform almost instinctively. Although
the idea of deciding when objects are similar to each other may seem intuitively
obvious, researchers have had difficulty in agreeing on a formal definition of a
cluster. One definition that fairly well describes the analysis performed in this thesis
is: “Clusters may be described as connected regions of a multi-dimensional space
containing a relatively high density of points, separated from other such regions by
a region containing a relatively low density of points.” (Jain and Dubes, 1988, p. 1)
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2. The Basis for Using a Cluster Analysis Approach

Myers cites anecdotal evidence that the probability of the existence of
undiscovered faults in a given section of code is proportional to the number of faulits
already found in that section (Myers, 1979, p. 16). He calls this tendency error
[fauit] clustering. Myers is speaking specifically of the proximities of faults to each
other in the code, e.g., two sequential statements.

The coupling effect is an idea that is similar to fault clustering. Offutt
conducted an empirical study of the validity of the coupling effect. He tested
programs that contained automatically generated first-order mutants. He then used
the same data sets to test programs that contained second-order mutants that
were generated from the first-order mutants. His results offer convincing evidence
that any test that is sensitive to “simple” faults will also detect more “complex”
faults. (Offutt, 1989)

Mutation testing uses the assumption that there are relationships between
faults as a basis for the technique. However, the approach tries to find faults by
random (or exhaustive) generation of mutants; this is a rather computationally
intensive approach. This thesis explores the idea of identifying the specific
relationships that cause fault clusters. Specifically, common features of failure
regions from the same program are identified. Failure regions are directly linked to
specific faults. Thus, knowledge about these common features may raise the
probability of predicting the locations of undiscovered faults based on their
relationships to faults that have already been found.

3. Cluster Analysis Techniques

a. A Graph Theory Approach
The discussion in this section derives from Godehardt's presentation
of graphs as structural models and their use in cluster detection (Godehardt, 1988).
The discussion is specific to failure regions modeled as nodes and relationships
between the failure regions modeled as edges. It is assumed that the reader is
familiar with the concepts of graph theory. Definitions of graph theory terms are
presented for reference in Appendix A.
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The connectivity (edge-connectivity) of a graph gives a qualitative idea
of both the nature and the strength of relationships between failure regions. If
bridges or cutnodes exist, it may be possible to find blocks in a graph whose
connectivity (edge-connectivity) is large relative to that of the graph itself. Even if
there are no bridges or cutnodes, a graph that is n-connected (n-edge connected)
for small n, e.g. 2 to 4, may still contain significant subgraphs that have relatively
larger connectivity (edge-connectivity.) Such blocks or subgraphs would suggest
that there are groups of failure regions that are strongly related to each other but
only weakly related to other failure regions. if the graph is disconnected then both
the absence of relationships between failure regions in different components and
the presence of relationships between failure regions within components is
emphasized.

The diameter, radius, and center of a subgraph indicate how intricately
the failure regions are related. If the diameter is one or two then every pair of failure
regions is either directly related or both regions in the pair are related to the same
failure region. If the diameter is large but the radius is small, then the center of the
graph is a subgraph that has relationships analogous to the supergraph with a
small diameter.

Relationships may also be modeled with a multigraph. Each graph in
the multigraph has the same node set, but the edge sets are based on different
criteria. In general, each graph in the muitigraph has blocks containing different
sets of nodes. I failure regions appear in two or more blocks across the multigraph,
this might suggest how two different clustering criteria were related to each other.
These failure regions might also be important in characterizing variables that lead
to certain faults.

b. A Traditional Clustering Approach
The goal of cluster analysis is to identify groups of objects that have
similar characteristics. Most traditional clustering algorithms (as opposed to the
graph theory methods described above) work on some variation of the following
method:
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1. For the object that is to be placed in a cluster, find the single object that is
“closest” to the object of interest, and put those two objects in the same clus-
ter.

2. If there is no “close” object, then start a new cluster.
In other words, the clustering is essentially based on an object’s relationship to its
closest neighbor.

There are two basic classifications of clustering techniques that follow
this algorithm: partitioned and hierarchical. Partitioned clusters require every object
to be in exactly one cluster. The researcher must decide a priori at what distance
an object is too far away from its neighbors to be included in their cluster. This
approach assumes that objects in different clusters are completely dissimilar.

The hierarchical approach assumes that if the restrictions for
comparison are relaxed sufficiently (e.g., to no restriction at all), then no two
objects are absolutely dissimilar. This method starts by forming clusters with strict
criteria and then allows the clusters to merge as the criteria are relaxed. When the
clustering criteria have been relaxed sufficiently, all the objects will form one
cluster.

One difficulty in applying these methods to the current problem is in
determining when two failure regions are close to each other. The sample space is
heterogeneous and the relationships between the failure regions are ordinal. Both
of these factors make the idea of Euclidean distance meaningless. Some other
measure of “distance” between failure regions is required. The approach used in
this study is described in detail in the next chapter.

The clustering method used in this study is a hierarchical method
called single-link clustering. The method uses a threshold graph to construct the
clusters. This method is also described more fully in the next chapter.

C. CONCLUSION

This chapter has described the background needed to support this study of
failure region analysis. A reliable method for finding faults in software needs to be
developed. An important element of a reliable testing method is its ability to estab-
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lish both the necessary and the sufficient conditions for a fauit to be revealed. Fail-
ure regions developed using Bolchoz's method have been shown to establish
these conditions for known faults. If relationships between failure regions can be
characterized, then the failure regions of detected faults may provide information
about where to find still more faults. One step towards characterizing these rela-
tionships is to determine the clustering tendencies of failure regions. The next
chapter describes the experiment used for studying failure region clusters.
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ll. EXPERIMENTAL DESIGN

A. INTRODUCTION

This study analyzed similarities and differences between failure regions. The
primary goal of this research was to develop a technique for empirically examining
failure regions to determine what relationships exist. A secondary goal was to char-
acterize the relationships. A set of programs written to the same specification were
taken from a previous study (Shimeall and Leveson, 1991). The faults in these pro-
grams provided the failure regions used in this study. Patterns of variable usage
were identified in these failure regions. Graphs based on this analysis used nodes
to represent failure regions and edges to represent relationships based on the con-
text and frequency of variable usage. Clustering patterns and tendencies among
the failure regions were identified from these graphs.

This chapter describes the data that were used for the study and how the data
were reduced to a form useful for analysis. The methods of generating the graphs,
including the edge weights, are presented. Finally, cluster analysis techniques are
discussed.

B. DESCRIPTION OF THE DATA

Shimeall and his students are using a set of eight programs in an ongoing se-
ries of software testing studies. Shimeall wrote a functional specification for a com-
bat simulation program. Eight pairs of undergraduate students separately wrote
programs based on this specification. Shimeall then extensively tested the pro-
grams using code reading, assertions, testing, and voting. The numbers of known
faults in each of the various programs range from as few as 25 to as many as 50.
(Shimeall and Leveson, 1991).

Bolchoz developed a method for determining the failure region of a fault based
on the conditions that must be met for that fault to cause a failure (Boichoz, 1990).
Shimeall used Bolchoz’s method to generate the failure regions of the faults in four
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of the eight programs. Appendix B contains the failure region definitions for Version
1 of the program as an example. The complete set of failure region definitions is
contained in a separate report (Shimeall, 1991). Table 3.1 gives a profile of the
fauits and failure regions by program version. The term dimensions is used to refer
to either input variables or to predicates composed of input variables. The numbers
of input variables exceed the numbers of dimensions because there are several in-
put variables that appear only in the variable predicates. These predicates are dis-
cussed further in the next section.

TABLE 3.1: PROFILE OF FAILURE REGIONS

Versions

1 2 3 4
Known faults 26 30 46 36
Noncoincident regions 23 26 38 27
Total dimensions 53 48 52 53 |
Mean dimensions per region 7.52 5.68 6.22 7.86 |
Std. dev. dimensions per region 5.72 2.98 3.93 3.20
Total input variables 69 72 75 67
Mean input variables per region | 38.83 38.56 42.76 52.33
Std. dev. input variables per 27.85 27.77 25.23 4.80
region

C. DATA REDUCTION

The first step in developing a strategy for exploiting relationships between fail-
ure regions was to determine how to identify the relationship. Failure regions are
defined by bounds on the various program variables. This suggested that the rela-
tionships sought in this study might also be described in terms of these variable
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bounds. Variables may be considered according to their syntax or their semantics.
Syntax deals with whether the variable is used legally within the constraints of the
language and the program. Semantics deals the meaning of the variable in a spe-
cific context. This study considered both syntax and semantics.

1. The Use Of Predicates

As Shimeall derived the failure regions, he noted that some variables were
used under commonly occurring conditions. The conditions were frequently related
to semantic contexts in the program specification. When these conditions were
noted, predicates were substituted for individual variables in order to identify the
semantic context of the failure region.

Predicates were treated in the same way as individual variables during the
analysis. There were two reasons for choosing this approach. The first was that
even though many of the same variables participate in the various predicates, the
predicates are semantically different. Preserving the semantic contexts of these
sets of variables within their respective failure regions helps to clarify the
relationships between the failure regions.

The second reason for using the predicates rather than their component
variables was that most of the predicates involved numerous variables. Edges in
the graphs were determined by how many variables two failure regions’ bounds
had in common. Since at least one predicate occurred in most of the failure
regions, using only the individual variables could have resulted in complete, or
nearly complete, graphs. This might have obscured interesting results.

The problem with leaving the predicates intact was that the predicates are
essentially semantic. On the other hand, individual variable incidence is primarily
syntactic. This mixing of semantic and syntactic forms in the same analysis could
lead to some distortion, especially since the decision of when to condense a set of
bounds into a predicate was somewhat arbitrary.

Thus, while it was recognized that some distortion would probably resuit
from either treatment of the predicates, it seemed that treating them in the same
manner as individual variables was more likely to filter some of the noise out of the
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graphs and draw more attention to the useful differences and similarities of the
failure regions. Hereinafter, variables and predicates will be reterred to ccllectively
as failure region dimensions.

2. Analysis of Dimension Participation in Failure Region Bounds
Each pair of failure regions within a given version was compared. For each
pair, each dimension was classified as participating in one of the following ways:

1. The dimension appeared in both regions’ bounds in exactly the same way.
For example, in failure regions 1.3 and 1.4, Params . NumWEvent s partici-
pates in the bounds as an index to the same dimension (see Appendix B).
This type of participation was termed Identical.

2. The dimension appeared in both regions’ bounds but was not Identical. This
type of participation was termed Coincidental.

3. The dimension did not participate in the bounds of either of the regions in
the pair. This type of participation was termed Nonbounding. What this type
of participation really means is that the bounds that this dimension place on
the failure region are no more restrictive than the entire range of values that
this dimension can assume.

The Identical and Coincidental dimensions are referred to collectively as the Com-
posite dimension.

(Initially, an attempt was made to identify dimensions that had similar
behavior between two failure regions. For example, if the same dimension
participated in an inequality in both failure regions but the inequalities were not
Identical, this might have been considered Similar. However, subsequent analysis
showed that the Similar dimension offered no useful insight and Similar was
discarded as a separate dimension classification.)

Dimensions that were Nonbounding for all failure regions in a given
version were discarded from that version’s matrix. This significantly reduced the
size of the matrices since there were 127 variables, besides the predicates, that
could potentially participate in the bounds. The various versions studied here
actually use from 48 to 53 dimensions in the bounds of their failure regions.
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3. The Fallure Region-Dimension Incidence Matrices

The results of the dimension evaluations were placed into incidence
matrices with dimensions on the rows and failure regions on the columns. These
matrices are in Appendix C.

In the matrix for Version 1, the entry in column 1.10 for
Army[].Squadrons is 110. This entry indicates that the participation of
Army [ ] .Squadrons in failure region 1.10 is Identical to itself and is not Identical
to its participation in any of the first nine failure regions. Coincidental behavior
between two failure regions is indicated if they both have an entry, but they are not
Identical to the same failure region. A blank entry in the matrix indicates that the
given dimension is Nonbounding for the given failure region.

Each entry in the matrix is referenced to the lowest numbered failure
region to which that dimension is Identical. As an example, both columns 1.10 and
1.11 contain the entry 11 for the dimension NArmy[]. This means that the
participation of NArmy [] in both of these regions is Identical to that in region 1.1.
This is clearly a transitive property, so the participation of NArmy (] in region 1.10
may be inferred to be Identical to its participation in region 1.11.

Both the failure regions’ definitions and the failure region-dimension
incidence matrices were generated manually. Because of this, some errors have
undoubtedly been made. However, the numbers of distinct failure regions in the
various versions used in this study range from 21 to 37. Thus the smallest graph
could have as many as 210 edges while the largest could have as many as 666. If
the errors are few, the affect on the validity of the qualitative results should not be
significant.

4. Fallure Region Graphs
Graphs were generated from the fallure region-dimension incidence
matrices for each version of the program. Each failure region was treated as a
node. Weighted edges between the nodes were based on the numbers of
dimensions the failure regions had in common as well as how those dimensions
participated in their bounds.
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The edge weights were calculated using the program listed in Appendix D.
This program takes the failure region-dimension incidence matrix as an input. It
identifies the value associated with each failure region-dimension pair, i.e. | or
blank. It also identifies the associated failure region number, i.e. the number
following the |. The program stores these values in an array indexed by dimension
and failure region numbers.

The program uses the failure region-dimension array to count the number
of occurrences of Identical and Coincidental dimensions for each pair of failure
regions. It also counts the total number of dimensions that appear in the bounds of
at least one of the failure regions in that pair. The program calculates the edge
weighting coefficients from these counts. (These coefficients are described in
subsection 5 below.) Finally, the program lists:

1. the edges, in descending order of their coefficients,

2. the coefficient and the dimension counts associated with each edge (i.e.
and coefficient numerator and denominator), and

3. the nodes, in order based on their largest incident edge.

These graphs are presented in tabular form in Appendix E.
5. Determination Of Edge Weights

a. Separate Analysis of Identical and Coincidental Data

The data for this study are essentially ordinal, namely, in descending
order: Identical, Coincidental, Nonbounding. Relative values cannot be assigned to
data that are inherently ordinal; thus, there is no way to develop a single edge
weight that accurately represents the relationship between two failure regions.
Because of this, three separate graphs were developed for each version of the
program.

The first graph considered only Identical bounds. The second graph
considered only Coincidental bounds. The third graph lumped the Identical and
Coincidental dimensions together to form the Composite dimension. This third
graph was developed to test whether splitting the dimension behaviors into
Identical and Coincidental had produced any artificial affects. This, then, resulted
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in three sets of binary data: Identical or not, Coincidental or not, and Composite or
not.

b. Selection of the Weighting Coefficient

Two different coefficients were considered for determining the values
of the edge weights. Both coefficients give an indication of how closely related two
failure regions are. The first was the simple matching coefficient, given in Equation
3.1 (Jain and Dubes, 1988, p. 17). The numerator of this coefficient is the sum of
the number of dimensions that are Composite for both regions and the number of
dimensions that are Nonbounding for both regions. The denominator of the simple
matching coefficient is the total number of dimensions.

S(m,n) = Fo0 ™ 811 (Eq 3.1)
’ o +38y1 +84p+ a8y,

where:

S(m,n) - simple matching coefficient for regions m and n.

agp - number of dimensions that are Nonbounding for m and n.
ap1 - number of dimensions that are Composite for m but not n.
a;p - number of dimensions that are Composite for n but not m.
ay¢ - number of dimensions that are Composite for m and n.

The simple matching coefficient assigns as much importance to
Nonbounding dimensions as it does to Comnosite dimensions. The
nonparticipation of a given dimension in a failure region simply means that the fault
can result in a failure regardless of the value of that dimension. The primary goal
of this study was to determine if failure regions can be used to identify dimensions
of interest for software testing. Therefore, it is not particularly useful to know that
the value of a dimension is irrelevant when the fault causes a failure. For the
purposes of this study, the participation of a dimension in the bounds of a failure
region is more significant than the nonparticipation of a dimension.

The second coefficient considered was the Jaccard coefficient, J(m,n),
given in Equation 3.2 (Jain and Dubes, 1988, p. 17). The a;, for this coefficient have
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the same meaning as those for the Simple matching coefficient. The numerator of
this coefficient is the number of dimensions that are Composite for both failure
regions. The denominator is the number of dimensions that are Composite for at
least one of the regions. This coefficient places a heavier emphasis on dimension
participation than on nonparticipation. The Jaccard coefficient that was used in this
study.

a,,
J(mn) = — —
ayyt+ay +ay,

(Eq 3.2)

The Jaccard coefficient had to be modified to analyze the Identical and
Coincidental data individually. The reason is that for the numerator, the condition
to be satisfied is not just Composite but specifically Identical or Coincidental. In
other words, for the graph of Identical values, the numerator of the coefficient is
only the number of dimensions that are Identical between the two regions, as is
shown in Equation 3.3. The Coincidental data are treated similarly in Equation 3.4.

I(m, n) = a,, +ay, +a,, (Eq 3.3)

where:
I(m,n) - modified Jaccard coefficient for Identical dimensions
i11 - number of dimensions that are Identical in regions m and n

c(mn) = C11 (Eq 3.4)
’ a4 +ay +2a,,

where:

C(m,n) - modified Jaccard coefficient for Coincidental dimensions
c41 - number of dimensions that are Coincidental in regions m and n

23




D. CLUSTER ANALYSIS

1. Clustering Method

Two methods were considered for use in identifying failure region clusters.
The first method was to look for k-connected subgraphs (Godehardt, 1988). This
method requires searching for all possible paths between every pair of nodes in the
graph. This is an NP complete problem. Additionally, in a weighted graph, the
problem must be solved for each threshold value of interest.

K-connected subgraphs were not used for two reasons. The first was that
the method is too detailed for exploratory analysis. It is more suited to identifying
specific clusters in data where the clustering behavior is already well understood,
i.e., where the range of k is fairly well estimable. The second reason for not using
this method was its computational complexity. Again, this inhibits exploratory
analysis.

The second method was adapted from Jain and Dubes (Jain and Dubes,
1988, p. 70). This method, called Single-Link Clustering, is also based in graph
theory but follows more closely the traditional ideas of cluster analysis. Clusters are
developed by adding edges to the graph in the order of their relative weights. As
the weight threshold becomes less restrictive, more edges are added to the graph.

The addition of a new edge to a graph can have one of two results. The
first is that the edge may connect two nodes that were already connected by edges
at more restrictive weight thresholds. Edges such as these have the effect of
strengthening existing clusters. The other result a new edge may have is to merge
two components in the graph. If one of these components has multiple nodes, that
edge has increased the size of a cluster. If both components are singleton nodes,
the edge has initiated a new cluster. (While a singleton node is technically a one
element cluster, the discussion here uses cluster to mean a grouping of two or
more nodes.)

The modification to the Single-Link method as described in Jain and
Dubes was that the requirement that no two edges have the same weight was
relaxed. This modification was reasonable since the goal of this study was not to
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identify specific failure regions in specific clusters; nor was it the goal to identify the
specific order in which failure regions were added to clusters. Rather, the goal was
to identity whether there was even a tendency for failure regions to cluster in a way
that was usetul for developing software testing strategies.

One note should be made regarding the use of the Jaccard coefficient in
conjunction with this cluster analysis method. Most clustering methods assume
that a smaller edge weight indicates nodes that are more similar to each other, i.e.
more strongly clustered. This idea comes from the fact that edge weights are
frequently derived from Euclidean proximities. For edge weights based on the
Jaccard coefficient, however, the closer the coefficient is to one, the more alike the
failure regions are. (The range of the coefficient is from zero to unity.) This does
not invalidate the clustering method; it merely means that edges are added to the
graph by lowering the threshold rather than by raising it.

2. Hierarchical Vs. Partitioned Clusters

The clustering method used in this study produces an hierarchical
clustering rather than a partitioned one. This is the type of clustering that was
desired since it was not clear that failure regions should necessarily belong to
exactly one cluster. Indeed, since the goal of this study was to determine if
knowledge about one failure region can be used to find other failure regions,
hierarchical clustering is more desirable than partitioned clustering.

If it is the case that failure regions have a strong hierarchical clustering
tendency, then at least two different ways of exploiting the clusters are suggested.
First, the stronger (i.e. more restrictive threshold) clusters may provide a method
to find the other failure regions within those clusters. Second, the potential exists
to “bootstrap” from one strong cluster to another under the right conditions. This
would involve identifying the types of dimension participations that result in the
edges that appear at the less restrictive threshold values.

E. CONCLUSION

This chapter has detailed the procedures followed in analyzing the data used
for this study. The known faults in four versions of the same program were used to
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develop the failure regions for those faults. The failure regions were analyzed for
Identical and Coincidental dimension behavior. The frequency of these types of
behavior was then used to develop weighted graphs. These weighted graphs pro-
vide a means for evaluating the tendency of failure regions to form clusters. The
analysis of these clusters is the subject of the next chapter.
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IV. EMPIRICAL RESULTS

A. INTRODUCTION

This chapter presents the results of the experiment discussed in the previous
chapter. Before proceeding, however, some caveats should be noted. First, stu-
dent programers produced the software used for this study. While these students
may have had significant experience in programming, they cannot, in general, be
classed with professional programmers. Fault populations produced by profession-
al programmers may vary significantly from those of student programmers. Addi-
tionally, the programs were all for the same application, namely, a battle simuiation.
Different types of applications may also produce significantly different distributions
of faults.

There are also some limitations that result from the experimental design. Only
one method of quantifying the relationship between two failure regions was stud-
ied, namely, a modified Jaccard coefficient. Additionally, only threshold graphs
were used for cluster analysis. The narrow focus of the design may impose an ar-
tificial structure on the data. Using only one analysis method may also obscure im-
portant features of the data or highlight insignificant features.

With these limitations in mind, and realizing that extensibility of the resuits be-
yond this one application has yet to be established, the results still provide useful
insight into how faults are related to each other. The next section describes how
the data are presented. After that, notable characteristics of the data and the valid-
ity of these characteristics are discussed. Finally, the results are interpreted with a
view towards software testing applications.

B. DATA PRESENTATION

Dendograms are the typical method of presenting data for hierarchical cluster
analysis. However, the goal of the cluster analysis in this study was not to identity
specific failure region clusters in specific programs. Rather, the goal was to deter-
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mine whether failure regions even have a tendency to form clusters. For this rea-
son, histograms were used instead of dendograms. The advantage of histograms
is that they are easier to use in comparing the behavior of several populations.
Dendograms are more useful for analyzing a single population.

For each program version, two histograms were constructed for each dimen-
sion type. The first histogram shows how many edges are added to the graph in
each interval of the Jaccard coefficient. in the second histogram, the column in
each Jaccard coefficient interval shows how many nodes have their largest inci-
dent edge in that interval. These histograms are presented in Appendix F.

The first histogram presents additional information. The total column height in
each interval shows the number of edges that have weights in that interval. The col-
umn is divided into two parts. The black part, labeled “Between Newly Connected
Nodes,” shows the numbers of edges that are incident on nodes that had no inci-
dent edge in a higher threshold interval. This information corresponds directly to
the numbers of nodes shown in the second histogram.The gray part, labeled “Be-
tween Previously Connected Nodes,” shows the numbers of edges that are inci-
dent on nodes that did have an incident edge in a higher threshold interval.

The edges were divided into “Between Newly Connected Nodes” and “Be-
tween Previously Connected Nodes” to help clarify the types of clustering behavior
that the failure regions were exhibiting. The former category helps determine the
numbers of edges involved in merging pairs of singleton nodes into new clusters
or adding singleton nodes to a cluster. The latter category helps determine when
previously defined clusters are being strengthened or are merging. While “Between
Previously Connected Nodes” does not distinguish between edges added within a
cluster and edges added between clusters, this is not important because it would
not provide additional information about whether failure regions tend to form clus-
ters, which is the primary goal of the cluster analysis. Alithough the strength and
size of clusters would be important in practical software testing applications of fail-
ure region clusters, the more important questions for this study are: how many
nodes are in some cluster and are the nodes added to the cluster at a statistically
significant threshold level?

28




The abscissae of the histograms are labeled with the Jaccard coefficient de-
creasing from left to right. The reason for this convention is that cluster data are
typically presented so that the more significant edges are to the left in the histo-
gram or dendogram. This requires the largest value of the Jaccard coefficient to be
presented at the left.

The histograms are divided into intervals of 0.05. In general, the data included
in an interval are strictly less than the upper limit of the interval and greater than or
equal to the lower limit. There are two exceptions: data in the uppermost interval
are less than or equal to unity; data in the lowermost interval are strictly greater
than zero. The reason for the first exception is obvious. The reason for the second
exception is that edges of zero weight represent the absence of a relationship be-
tween two failure regions while nonzero edges represent the presence of some re-
lationship, however weak. Inclusion of the zero weight edges might have skewed
the histograms and lead to false conclusions about failure region clustering tenden-
cies.

In several cases, two or more distinct faults shared identical failure regions.
When this occurred, the failure region was considered only once in constructing the
histograms and the graphs. The reason is that if faults share identical failure re-
gions, any test that reveals one of the faults will reveal all of them. The goal of this
study is to find a method to reveal new failure regions rather than redundant ones.

C. DATA ANALYSIS

1. Notable Characteristics

Analysis of the histograms suggests that there is indeed a tendency for
failure regions to form clusters. For the identical dimensions, all four versions'
histograms exhibit small groups at relatively large thresholds. These groups
correspond to several small and unconnected clusters being formed. Over half of
the nodes in the graphs have at least one incident edge in these higher threshold
intervals. This is as opposed to many edges being added between just a few
nodes.
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The behaviors of the Coincidental and Composite dimensions are broadly
similar to that of the Identical dimensions. However, there appears to be a
difference in how the clusters grow. (This is discussed further in Section D.)
Additionally, there seems to be more variation in the behavior between the versions
for Coincidental dimensions as opposed to ldentical dimensions. It is difficult to
judge whether there are, in fact, significant differences here since there are only
four versions to compare.

2. Data Validation

In order to verify that the noted characteristics could not be attributed to
random behavior or to the experimental method, the experimental data were
compared with a random population of regions. The null hypothesis to be tested by
this comparison was: there is no difference in behavior between the experimental
population of failure regions and a population of regions bounded by arbitrarily
selected conditions occurring in the source code. Rejection of the null hypothesis
indicates that clustering a behavior of the faults rather than the application studied
or the analysis technique employed.

Failure regions are bounded by conditions that either arise directly from
the program source code or are synthesized from the source code. The random
regions were bounded by conditions that were randomly extracted from the Gold
version of the program in Shimeall and Leveson’s study (Shimeall and Leveson,
1991). The Gold version was used to ensure that the random regions were not
biased in favor of one of the test versions. The conditions were selected from a text
file using the UNIX library function random. The distribution of the numbers of
conditions in the random regions was selected to reflect the number of dimensions
in the experimental failure regions.

Two populations of random regions were used in order to match the sizes
of the experimental populations. A 20 region set was used to approximate Versions
1, 2, and 4, a 40 region set was used to approximate Version 3. The 20 region set
was a subset of the 40 region set. These sets are referred to as R20 and R40,
respectively. A statistical profile of the random regions is given in Table 4.1. The
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mean number of input variables in the random regions is smaller than for the
experimental regions since the random regions contain no predicates. {f the
predicates in the experimental regions are not expanded, the mean number of
dimensions of the experimental regions is similar to the mean number of variables
in the random regions.

TABLE 4.1: PROFILE OF RANDOM FAILURE REGIONS

R20 R40
Minimum/Maximum variables in a region 317 3/17
Total input variables 50 60
Mean input variables per region 8.85 9.98
Std. dev. input variables per region 4.31 4.06
Mean input conditions per region 6.50 6.92
Std. dev. input conditions per region 2.26 2.39

The random regions were treated with the same experimental procedure as
the experimental regions. One way analysis of variance (ANOVA) was applied to
the four experimental versions and the two random versions for both the edge and
node distributions and for each type of dimension. The actual edge ;Néights (as op-
posed to the histogram distributions) were used in this analysis. Computations
were performed with the UNIX|STAT data analysis program oneway (Periman,
1986). The results of the analysis are presented in Tables 4.2 through 4.7. The col-
umn headings are self explanatory except for the last two; P(R20) and P(R40) are
the probabilities that the given experimental distribution is the same as the random
distribution. These probabilities are based on a Student t test.

The resuits of ANOVA indicate that the null hypothesis can be rejected. The
experimental edge distributions differ from the random edge distributions at better
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TABLE 4.2: IDENTICAL DIMENSION EDGE STATISTICS

Version N Mean SD Min Max P(R20) P(R40)
1 57 0.166 0.147 0.031 0.700 <0.005 <0.001
2 42 0.273 0.190 0.062 0.636 <0.001 <0.001
3 236 0.175 0.142 0.040 0.909 <0.001 <0.001
4 58 0.126 0.108 0.048 0.700 <0.1 <0.01
R20 65 0.097 0.055 0.040 0.250
R40 288 0.097 0.064 0.034 0.476
Total 746 0.139 0.123 0.031 09809 | - | -
TABLE 4.3: COINCIDENTAL DIMENSION EDGE STATISTICS
Version N Mean SD Min Max P(R20) P(R40)
1 160 0.211 0.122 0.034 0.533 <0.001 <0.001
2 211 0.187 0.105 0.059 0.500 <0.001 <0.001
3 529 0.204 0.128 0.043 1.000 <0.001 <0.001
4 196 0.203 0.142 0.045 0.889 <0.001 <0.001
R20 140 0.128 0.080 0.042 0.389
R40 681 0.154 0.098 0.034 0.500
Total 1917 0.180 0.117 0.034 1.000 | -eeeme e
TABLE 4.4: COMPOSITE DIMENSION EDGE STATISTICS
Version N Mean SD Min Max P(R20) P(R40)
1 168 0.258 0.179 0.036 1.000 <0.001 <0.001
2 223 0.228 0.179 0.059 1.000 <0.001 <0.001
3 603 0.248 0.177 0.043 1.000 <0.001 <0.001
4 210 0.224 0.173 0.045 1.000 <0.001 <0.001
R20 154 0.158 0.099 0.042 0.500
R40 719 0.185 0.118 0.034 0.667
Total 2077 0.216 0.157 0.034 1.000 | - | -




TABLE 4.5: IDENTICAL DIMENSION NODE STATISTICS

Version N Mean SD Min Max P(R20) P(R40)

1 23 0.312 0.193 0.000 0.700 <0.005 <0.1

2 26 0.290 0.224 0.000 0.636 <0.05 >0.1

3 38 0.378 0.215 0.000 0.909 <0.001 <0.001 |

4 21 0.257 0.200 0.000 0.700 <01 >>0.1 ‘
R20 20 0.168 0.059 0.091 0.250 | e | -
R40 40 0.243 0.084 0.125 0476 | e 1 e
Total 168 0.283 0.184 0.000 0.909

TABLE 4.6: COINCIDENTAL DIMENSION NODE STATISTICS

Version N Mean SD Min Max P(R20) P(R40)
1 23 0410 | 0129 | 0000 | 0533 | <0001 | <01
2 25 0359 | 0128 | 0.000 | 0500 | <0.05 | >>0.1
3 37 0.484 | 0208 | 0154 | 1000 | <0.001 | <0.005
4 21 0503 | 0225 | 0188 | 0889 | <0.001 | <0.005 |
R20 20 0276 | 0082 | 0125 | 0389 | - 7[ -------- I
R40 40 0357 | 0092 | 0182 | 0.500 j[
Total 166 0402 | 0168 | 0000 | 1.000 | - | ’
TABLE 4.7: COMPOSITE DIMENSION NODE STATISTICS
Version N Mean SD Min Max | P(R20) | P(R40)
1 23 0593 | 0222 | 0000 | 1.000 | <0.001 | <0.005
2 25 0518 | 0253 | 0000 | 1000 | <0.01 >0.1
3 a7 0704 | 0184 | 0167 | 1000 | <0001 | <0001 |
4 21 0599 | 0236 | 0.231 1.000 | <0.001 | <0.005
R20 20 0338 | 0112 | 0167 | 0500 | -veee | weeeee
R40 40 0447 | 0120 | 0250 | 0.867 | wveeee | coeoeee
Total 166 0541 | 0221 | 0000 | 1.000 | e | eeee




than a 99 percent confidence level with the exception of Version 4's ldentical di-
mensions, which have a better than 90 percent confidence level. Given the explor-
atory nature of this study and the lack of prior information about the experimental
population, a 90 percent confidence level is generally considered acceptable.
Thus, if P(R) > 0.1 the experimental data were not considered significantly different
from the random regions.

The node distributions had a wider range of variation, but most of the experi-
mental distributions differed from the random distributions with greater than 90 per-
cent confidence. There were some notable exceptions. For the Identical dimen-
sion, Version 2 and Version 4 were not significantly different from R40. For the Co-
incidental dimension, Version 2 did not vary significantly from R40. Finally, for the
Composite dimension, Version 2 did not vary significantly from R40.

While Version 3 is clearly different from the random distributions in all cases,
there seems to be a contrast between the node distributions of Versions 1 and 2
and Version 4. Version 4 was significantly weaker than either Version 1 or 2 for the
Identical dimension while it was significantly stronger for the Coincidental dimen-
sion. There is insufficient data to determine whether more random behavior in one
dimension leads to less random behavior in another dimension.

3. Cluster Formation

The general shapes of the experimental data histograms are slightly but
significantly different from the random data histograms. Specifically, the small
groups of edges and nodes at higher coefficient thresholds are absent in the
random distributions. However, the experimental distributions appear to be
overtaken by random behavior below thresholds of about 0.1 to 0.3, depending on
the dimension type.

The primary usefulness of the histograms has been twofold. First, they
have established that there is a statistically significant tendency for failure regions
to form clusters. Second, they have provided an indication of which edges in the
graph are, in fact, statistically significant. The shortcoming of the histograms is that
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they do not show exactly how clusters are being formed. The graphs must actually
be constructed for this purpose.

Graphs were constructed using only statistically significant edges.
Examples of these graphs are given in Figures 4.1 and 4.2. Most of the graphs are
too large to be presented in a graphical format. Complete listings of the edges are
presented in Appendix E. The numbering of the nodes is derived from the order in
which the faults were discovered in Shimeall and Leveson’s study (Shimeall and
Leveson, 1991). A complete listing of the numbered fauits and their associated
failure regions is given in the library of failure regions (Shimeall, 1991).

The Identical dimensions of Versions 1 and 2 displayed behavior similar
to that shown in Figure 4.1 for Version 3. Clusters (subgraphs) of two to nine nodes
formed with many of the clusters containing components that were complete on
three to six nodes. Version 4, on the other hand, had only three two-node clusters
above the random level. It is notable that Version 4 displayed the least overall
variance from the random regions for the Identical dimension.

The graphs for the Coincidental dimension tended to be formed in a
different fashion. As the example in Figure 4.2 shows, there are several subgraphs
that are complete on three or four nodes. However, the clusters are not as clearly
separated in the Coincidental dimension as they are in the Identical dimension.

Graphs for the Composite dimension were not constructed since the
original purpose of this dimension was simply to ensure that division into Identical
and Coincidental did not impose an artificial structure on the data. Review of the
table of edges in Appendix E suggests that graphs constructed from the Composite
dimension would behave similarly to those of the Coincidental dimension.

The differences in the way the clusters join as the threshold is relaxed
suggests that the hierarchical clustering theory may have been appropriate for the
Coincidental dimension but that the Identical clustering might, in fact, be better
modeled as partitioned.
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Figure 4.1: Version 3 Identical Clusters (coefficlent in classes > 0.25)

represented here.

Figure 4.2: Version 1 Coincidental Clusters (coefficient in classes > 0.25)
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D. DATA INTERPRETATION

Two different clustering behaviors have been noted for the experimental data.
The difference in behavior seems to be driven primarily by dimension type. This
suggests that failure region clusters may support two different methods of software
testing.

The first type of clustering is essentially partitioned, as displayed by the iden-
tical dimensions. This type of clustering would support a testing method that first
broadly examines the software, for example all-branches structural testing. Failure
regions of faults found by the initial method can then be used to search for other
faults in the cluster. Since for partitioned clusters every fault is in exactly one clus-
ter, it would be necessary to find a set of faults that covers several clusters with the
initial testing method in order for failure region analysis to be a successful follow-
on approach.

The hierarchical clustering exhibited by the Coincidental dimension is more
suggestive of an iterative approach to testing. At least one fauit must still be found
by some other method but it may then be possible to iteratively analyze failure re-
gions and find more faults.

The information available to the tester from failure region analysis is more spe-
cific than just which variables should be considered in constructing a test set, es-
pecially for the Identical dimension. Failure region analysis gives the tester the spe-
cific conditions that resulted in faults. This study hzs shown that he may reasonably
expect these same conditions to appear in the failure region bounds of other faults.

Finally, it should be noted that failure region cluster analysis cannot guarantee
that every fauit will be located. The primary reason for this is that not every fault wiil
be in a cluster or, more correctly, that some faults may be in singleton clusters.
Several of the graphs generated in this study contained singletons. These faults
will have to be discovered by some other method.

E. CONCLUSION

This chapter has presented the results of this experiment and their validity. It
has also suggested ways these results may be applied in developing software test-
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ing strategies. The last chapter summarizes the findings of this thesis and discuss-
es how these findings support or contrast with previous findings. Directions for fur-
ther research are also suggested there.
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V. CONCLUSIONS AND SUGGESTIONS FOR FURTHER
RESEARCH

Previous authors have postulated that faults are related to each other and
testers have tried to exploit the effect. However, the evidence and applications
have been largely anecdotal. This thesis is the first work that has empirically
analyzed the relationships between specific faults by using failure regions. The
results of this thesis not only support the existence of such relationships, they
suggest methods for explicit rather than just implicit exploitation of them. This
chapter summarizes these results, discusses them in the light of previous work,
and describes directions for future research that are suggested by this thesis.

A. CONCLUSIONS

This thesis offers strong evidence that failure regions tend to form clusters.
The usefulness of this clustering behavior is that known faults in a program can be
analyzed to produce their failure regions. Those failure regions then provide infor-
mation about variables and conditions that are likely to be involved in other failure
regions. This, in turn, suggests to the tester areas that will probably be fruitful in his
search for other faults.

Failure region clustering was observed based on two distinct criteria: shared
bounding conditions (the Identical dimension) and shared variables that appear in
different contexts (the Coincidental dimension). The nature of the cluster formation
for the two dimensions, however, was markedly different. The Identical dimension
tended to produce small, isolated, strongly connected clusters. The nodes in these
clusters were defined at relatively high thresholds and then the clusters became
more strongly connected as the edge weight threshold was lowered. On the other
hand, the Coincidental dimension tended to form larger, less strongly connected
clusters. The clusters that formed at higher thresholds tended to merge into one or
two larger clusters as the edge weight threshold was relaxed. There was no strong-
ly identifiable pattern to the Coincidental cluster formation.
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B. RELATIONSHIP OF RESULTS TO PREVIOUS WORK

The results of this thesis generally support the findings of previous researchers
in the area of relationships between faults. This agreement gives some confidence
that these results may extend to more general software applications. The results
also offer some ampilification to previous studies.

Offutt offered convincing empirical evidence that the coupling effect existed,
but his study provided no explanation of the basis for it (Offutt, 1989). This thesis
makes the first step toward identifying the specific behaviors of faults that result in
this effect. The Identical dimensions considered in this study closely resemble the
idea behind mutation testing: change one condition at a time and run a new test.
Thus, the small, strongly connected, isolated clusters that were formed in the Iden-
tical dimension graphs provide an explanation of why muitiple-mutation testing
does not fair significantly better than single-mutation testing. Every faultin the clus-
ter has a short path to most other faults in the cluster.

The ldentical dimension results also seem to support Hamlet and Taylor's
analysis that partitioned testing is a good debugging method but a poor technique
for release testing (Hamlet and Taylor, 1988). If one fault in a cluster is known, its
failure region may allow the partitions to be refined in a way that leads to the other
faults in the cluster. However, this does not aid in finding faults in other clusters
and, in general, failure region analysis offers no confidence that every cluster of
faults has been located.

The graphs formed in the Coincidental dimension are more eccentric and sug-
gest a complex behavior that is more difficult to analyze than the Identical dimen-
sion graphs. The absence of a clearly evolving structure in the Coincidental graph
formation may offer insight into when specific testing techniques are appropriate.
These graphs would seem to provide a basis for Hamlet and Taylor's assertion that
in the absence of specific information that allows technique refinement (such as
that provided by the Identical dimension), random testing is as reliable as the best
planned testing (Hamlet and Taylor, 1988). Further study of the Coincidental di-
mension is needed to clarify its implications for software testing.
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C. SUGGESTIONS FOR FURTHER RESEARCH

1. Experimental Method

While the results of this work are promising, the experimental population
was small and narrowly focused. Additionally, the programs were written by
students. Both the method and the results should be validated using a broad range
of professionally produced applications.

One weakness of the method used in this thesis is in how it deals with one
failure region that is a subset of another. For instance, if region 1 is bounded by
conditions B and C and region 2 is bounded by A, B, C, D, E and F, the Jaccard
coefficient is 0.33. However, the relationship is probably stronger than is suggested
by the coefficient.

Another weakness is inherent in the use of a coefficient for weighting the
edges of the graphs. The relationships described by the coefficient are actually
rational rather than real. The ratios 1/2 and 6/12 both yield the same coefficient.
However, the second ratio probably represents a more involved (and perhaps
more easily exploitable) relationship. Both of these difficulties with the coefficient
suggest the need for a more descriptive representation of the relationship between
failure regions. The separate distributions of the numerators and the denominators
were used in an initial attempt to exploit this difference in ratios. However, this
approach offered no insight and was omitted from this thesis.

Finally, only threshold graphs were used for cluster analysis. Alternative
approaches to the problem were described in Chapters Il and Ill. These and other
methods should be explored. Analysis for k-connected components seems
particularly promising in light of the graphs presented in the previous chapter.

2. Related Questions

Several questions about fault and failure region behavior have arisen from
this study. First, several failure regions were identical in one condition, e.g., the
reachability condition, but differed in the other two conditions. Can the method
developed in this study (or some other method) take advantage of this special
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behavior? What if Condition | for one failure region is identical to Condition 1l or Il|
for other failure regions?

Somewhat different behaviors were noted among the three versions that
had approximately the same number of failure regions. Is there an antagonistic
affect between the Coincidental and Identical dimensions? Does strong clustering
in one dimension mean weak clustering in the other?

Faults were numbered in order as they were discovered by the various
testing techniques of Shimeall and Leveson's study (Shimeall and Leveson, 1991).
Thus, many sequentially numbered faults were discovered by the same fault-
detection method. Many sequentially numbered faults were also strongly
connected in the graphs, often at the same threshold values. Is there an identifiable
relationship between certain fault-detection techniques and certain types of fault
clusters?

An in-depth study of the clusters identified in this study may be useful in
determining specifically which types of conditions and variables are most likely to
cause clusters to form. This is an area where comparison of different software
applications is especially important. Even if clustering is a characteristic of failure
regions in general, the specific types of conditions that cause the clustering may
vary from application to application.

Finally, the understanding of relationships between faults that this thesis
offers may provide insight into refining existing fault-detection techniques. For
example, all-paths testing is generally considered to be a desirable goal; however,
it is usually not achievable because the number of paths is too large. The key
relationships identified by failure region analysis may provide the information
necessary to be able to modify such techniques so that they are practical.

D. APPLICATIONS BEYOND TESTING

This study has focused on the use of failure regions to understand the relation-
ship of one fault to another. The goal has been to develop information that will be
useful in software testing. In a broader sense, however, the relationship between
two failure regions is a condensation of the relationships between the two sets of
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code locations that are associated with those failure regions. A set of bounding
conditions that is analogous to a failure region can be developed for any location
in a program. If the conclusions of this thesis are applied from this perspective, it
may lead to a better understanding of how ditferent parts of a program interact with
each other. Such an understanding might help prevent occurrences like the tele-
phone example cited in the first chapter by allowing failure prediction.
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APPENDIX A
GRAPH THEGRY DEFINITIONS

The following definitions are taken from Buckley and Harary (Buckley
and Harary, 1990):

1. A graph consists of a finite nonempty set N of nodes together with a
set E of edges. An edge is an unordered pair of distinct nodes in N.

2. A path from node u to node v is a sequence of distinct nodes and edg-
es that starts with u and ends with v. The length of a path is equal to
the number of edges in the path.

3. The distance between nodes u and v is equal to the length of a short-
est u-v path.

4. A graph is connected if there is a path joining each pair of nodes.
5. A component of a graph is a maximal connected subgraph.

6. A cutnode (bridge) of a graph is a node (edge) whose removal in-
creases the number of components.

7. A nonseparable graph is connected, nontrivial, and t.as no cutnodes.
8. A block of a graph is a maximal nonseparable subgraph.
9. The eccentricity of a node v is the distance to a node farthest from v.

10.The radius (diameter) of a graph is the minimum (maximum) eccen-
tricity of all nodes in the graph.

11.The center of a graph is the set of all nodes whose eccentricity equals
the radius of the graph.

12.The connectivity (edge-connectivity) of a graph is the minimum
number of nodes (edges) whose removal results in a disconnected or
trivial graph.

13.A graph is n-connected (n-edge connected) if its connectivity (edge-
connectivity) is at least n.
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APPENDIX B

VERSION 1 FAILURE REGIONS

Notation

In the descriptions that follow, the following conventions are used:

So far as is possible, the conventions of the specification have been preserved.

Text appearing in italics (e.g. ‘Endurance’) are defined within the scope of this document,
either globally or for a specific failure region.

Text appearing in roman type (e.g. ‘Army[].Endurance’) are program variables for the
implementations containg the fault. The only exception to this is the variable ‘Mainloop’,
which is used to indicate the current simulation cycle, but may not appear in a specific
version under that name.

Due to the fact that program variables are more than one character in length, all multipli-
cation is shown explicitly with the multiplication symbol x.

Due to the length of the formulae below, it is necessary to break formulae across more
than one line. There are no matrix or vector operations appearing in this document, and
parentheses are used strictly to delimit portions of formulae to improve readability or to
indicate precedence of operations.

All defintions within ‘Condition I' of a failure region are assumed to extend over ‘Condition
II’ and ‘Condition IIT’ of that failure region unless use of parentheses indicates otherwise.
All definitions within ‘Condition II’ of a failure region are similarly assumed to extend over
‘Condition III’ of that failure region.

The diacritical marks ' and ” are used strictly to distinguish between variables of similar
name and role in a given failure region.
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Predicate Definitions
Endurance of Squadron (B, g, j) at time ¢:
Endurance(B, g, j,t) =Army|[B, g]. Endurance[j]—

Army[B, g]. Wear[j] x t—
Damage(B)g)jrt - 1) + Repair(Brg’jyt - 1)

Weapon Damage of Squadron(B,g,j) up to and including time t:

NArmy[~B] (Puram-.NumWTypeo Army[~B,e]. Weapon[w]).NumWeapon

ex=1 w=l1 i=1

Damage(B,g,j,t) = ¢ Army[-B, ¢] Weapon[w]. Damagex

Army[-B, g]. WeapSensativity[w]x

(2B,g,j(t — 1) — ax.B e w.i(t — 1))2+

(¥8.4.;(t - 1) — 6y~ B .e,w,ilt - 1))2
Army[-B ¢]. Weapon[w] Radius

max | 0,1 -

\

Whether or not Squadron(B,g,j) is a casualty at time ¢:
Casualty(B,g,j,t) = (Endurance(B,g,j,t — 1) > 0)A
( Endurance(B,g,j,t—1 <0 5)
Armle,gl.E‘ndurnncel;'l -
Repair applied to Squadron(B,g,j) up to and including time ¢:
(0 ift<1

Repair(B,g,j,t - 1) if (t>1)A
-Casualty(B,g,j,t — 1)

. . Repair(B,g,j,t — 1)+ otherwise
Repair(B,g,j,t) = { min(Su(ppl(B,g,t —)1)/NumCas(B,g,t),
FizRate(B,g,t — 1)/NumCas(B, g,t),
(Army|[B, g].Endurance];]
—Endurance(B,g,j,t — 1)
—Repair(B,g,j,t - 1)
L +Repair(B,g,j,t = 2)))

Number of Casualties in Battalion B, g at time ¢:
Army[B,g].Squadrons {1 if Casualty(B,g,j,t —1)

NumCas(B,g,t) =
i=1 0 otherwise
Rate of Repair available to any squadron of battalion B, g at time t:
FizRate(B, g,t) = Army|B, g].FixRate x NumFiz(B,g,t ~ 1)
Number of Squadrons in battalion B, g dedicated to repair other squadrons at time t:

Army(B,g) Squadrons {0 if ~Casualty(B,g,j,t)

j=1 1 otherwise

NumFiz(B,g,t) = Army[B, g]. NumFixers x

Army{B, g].Squadrons
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Amount of supplies available in battalion B, g at time ¢:

Army(B,g].Squadrons
Suppl(B, g,t) = Army[B, g].FixSuppl — Z Repair(B,g,j,t ~ 1)

i=1
X Location of Battalion B, g at time t:

zB 4(t) =Army[B, g]. X+
t

Z(V(B,g,d) x cos(Army(B, g]. Theta)

d=1
xTM(B,g,zp4(d - 1),yB 4(d - 1),V(B,g,d — 1))
xWM(B,g,zp,4(d—1),yp,4(d - 1),d))

Y Location of Battalion B, g at time t:
yB.¢(t) =Army([B, ¢].Y+
t
S"(v(B,g.d) x sin(Army[B, g]. Theta)
d=1

XTM(ngsz.y(d - l)lyB.g(d - 1)’ V(Bv gvd - 1))
xWM(B,g,zB,4(d - 1),yB 4(d - 1),d))

Velocity of Battalion B, g at time t:

V(B. ot Army(B,g].Squadrons { oo if E'ndurance(B,g,j,_t -1)<0
(B,g,t) = [Jn=l{1 A[my[B‘g]VOb] X %%\% otherwise
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Terrain effect on Movement of Battalion B, g at location z, y moving at velocity v:
Let z’ and ¢ represent the end of the possible movement, p, ¢ be the Terrain grid location of z, y:

z' = z + v x cos(Army[B, g]. Theta)
¥ = y+ v x sin(Army([B, g]. Theta)

p(.t) = l nram: eltaJ

9(¥) = | paremiv Do)

0 ifv=0

TM(B,g,z,y,v) = Army[B,g) MaxSlope~ : = = )
max ! Army[B, 4] MaxSlope otherwise

Weather effect on Movement of Battalion B, g at location z, y at time t:
Let (W X;, WY;) be the center location of storm i at time t:

Weather[i]. WXO if ¢ < Weather[i].TStart V t > Weather[i]. TEnd
WX,' =
Weather[i]. WXO0 + (¢ — Weather(i] TStart) x Weather[i]. dWX otherwise
{Weat.her[i].WYO if t < Weather[i].TStart V¢t > Weather[i]. TEnd
WY, =

Weather[i].WYO0 + (t — Weather[i]. TStart) x Weather[i].dWY otherwise

Let W be the total effect of storms on location (z,y) at time ¢:

0 if t < Weather[:].TStart vV t > Weather{i]. TEnd
Params. NumWEvents
W(z,y,t)= Z Weather{i]. WRadius - /(=W X,)? +(y— WY, )?
i=1 0, eather]s]. 1us X) otherwise
Weather[i]. WSeverity

1 if W(z,y,t)=0

WM(B,g,2,y,t) = { Army[B, g] MWEffect x
W (z,y,t)~Params. WMaxSeverity x Params NumWEvents

Params. WMaxSeverity x Params. NumWEvents otherwise
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Weather effect on Observation at location (z,y) at time t:

0 if W(z,y,t) =0
WO(z,y,t) =

otherwise

w{ r|¥ ,t)—Params. WMaxSeverity x Params. NumWEvents
arams. WMaxSeverity x Params. NumWEvents

(X,Y) Location of Squadron B, g, j at time t:
Let s be the number of Squadrons in Battalion B, g prior to squadron j that have positive
endurance at time ¢:

Jj-1

s(B,g,5.t) =)

i=1

0 if Endurance(B,g,i,t -1) <0
1 otherwise

(zB,4(t — 1) + Army|[B, g]).SquadSepx

(s(B,g,j,t) - [m%(r—’-{—m)md x Army[B,g].GRow) -

Army|B,9].GRow x Army[B,g]. SquadSep

2
if s(B, g, Army[B, g].Squadron + 1,t) — s(B, g, j,t) >
Army[B, g].GRow

zB,9i(t) = < zg4(t — 1) + Army[B, g].SquadSepx
(3(3»9,1',‘) - [Am’yg',g' éRDwJ x Army[B, g].GR,ow) -

c(B,g,Army[B.ﬂ].Squadron+l,t)—l' B ‘;:"B _,'? pudrontl,t kArmy[B,g].GRow

xArmy[B, g].SquadSep
\ otherwise

¥B.g.i(t) =yB,¢(t — 1) + Army[B, g]. RowSep x lm’ﬁ%ﬁ’;’]’%ﬁJ

-0.5 x l’ B, 'AA":‘myB"y' .G“’df"“" J x Army[B, g].RowSep
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Squadron B, g, j observes squadron —B, e, k at time t:

Observe(B, g, j, ¢, k,t) = BigEnough(B, g,j,e,k,t) A Clear(B, g,j, e, k,t)
AOQObvious(B, g, j,e,k,t)

Squadron —B, e, k is large enough to be seen at the distance from squadron B, g, j at time ¢:

BigEnough(B,g,j,e,k,t) =
z9j = zB,g,j(t —1) Aygj = yp,g,i(t — DA
zek = 2. e k(t — 1) Ayek = y-B e r(t — 1A
-z . z”:z
(z',¢),(z",y") € {(zek = Army[-B, ¢].SquadWidth/2,
yek + Army[-B, €].SquadLength/2)}
> Army[B, g].ObsMinAngle;])

(e (322) 1

No terrain blocks the view of squadron - B, e, k from the position of squadron B, g, j at time ¢:

Clear(B,g,j,¢e,k, 1) =
z9j=2p,gi(t —1) Aygji =yp,i(t — DA
zek = z.p . 1(t — 1) A yek = y-p.ei(t — 1)A
—_ 9 —_— k
(Va’al’ < cl’ 2, Z', a= I.Paramzs.XDeltaJ Aa' = I.Paran:e.XDeltaJ A

¢ = | prllrpars| A€ = | peiitpam | A

z = Alt(a,c,zgj,ygj) A 2’ = Alt(d’, ', zek, yek)A
(Vn,1 < n < Params.SampleRate — 1,

= 2 = |2gitrx(zekozgj) | o _ |ygitrx(yek-ygj)
(Br,p,q,r_ Pan.mu.SampleB.ate-l’p— l Params.XDelta J 4 I_ Params.YDelta j’

(z+rx (2 = 2)) > Alt(p,q,zgj + r x (zek — zgj),ygj + r x (yek — ygj))
)) )
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Squadron —B, e, k differs enough from its background to be discerned by squadron B, g, j at time
t:
Obvious(B, g, j,e,k,t) =
29j = zB,g,j(t — 1) Aygj = yB,g,;(t — 1A
zek = z.p  x(t — 1) Ayek = y-pei(t — 1A

Bl(a’ ¢’ .zek,yek)—Army[~B,e] Squadintensity[k]
I(a’,c’ ,zek,yek)

Params.SampleRate
. nx(rek—zrgj) . nx(yek-ygj) :
Z ((WO (zg] X arams.SampleRate ’ y97 % Params.SampleRate’ Mamloop) X

n=1
Army({B, g]. VWEffect)+
2

( . . ~zgj
" (2,3,,:(Mamloop -1)—zgj x #‘%’—-—;:m;%) +

. . (yek-yg9j)
(y.,B'e,(Mamloop —1) - ygj x Par';;sy.seampleJRate

NArmy[~B] > Army[-B, ¢'].ObsJamRadius

> —
e'=1 (z-.B,el(Mainloop - 1) —zgj x pﬁﬁ%’%ﬁ%ﬁ) +
2

(-5.e-(Mainloop — 1) - ygj x prmlich=se) )
Army{-B,e’|.ObsJamRadius

\ X Army[-B, ¢'].ObsJamEffect otherwise

)) <Army[B, g].ObsMinContrast[j])

Squadron B, e, k is in range of the weapons of battalion B, g at time t:
InRange(B, g,e,k,t) =

zek = z.p . x(t — 1) Ayek = y-pex(t — 1A
V(zek — zp 4(t — 1))2 + (yek — yp,¢(t — 1))2 < Army[B, g]. Weapon[i].Range

Number of Squadrons in battalion B, g dedicated to processing messages at time ¢:

NumCas(B, g,t)
Army[B, g].Squadrons

NumProcess(B, g,t) = Army[B, g]. NumProcess x

Number of Squadrons in battalion B, g dedicated to receiving messages at time t:

NumCas(B, g,t)
Army(B, g].Squadrons

Number of Squadrons in battalion B, g dedicated to communications jamming at time ¢:

NumCas(B,g,t)
Army[B, g].Squadrons

NumRec(B, g,t) = Army[B, g] NumReceive x

NumJam(B, g,t) = Army[B, g]. NumJammers x

Number of functional weapons of type ¢ in battalion B, g at time ¢:

NumCas(B, g,t)
Army{B, g].Squadrons

NumWeapon(B, g,i,t) = Army{B, g]. Weapon(i]. N\umWeapon x
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Target coordinates for weapon i of type w in Battalion B, g at time ¢:

azB,y,w,i(t) =ZaB,ek D

((G—Zl Ain:y["B ¢'].Squadrons {l if 3j, Observe(B,g,j,¢', k't - l)>

0 otherwise
e’k=_11k’=l
+ Z 1if 35, Observe(B, g,j,e,k',t — 1) _
e 0 otherwise -

w=1
(Z NumWeapon(B, g, w’,t)) +i-1

wi=1

ayB»ﬂ,W.f(t) = Y-B,ek D

((eif Afn‘.‘y["B ¢'].Squadrons {1 if 3j, Observe(B, g,j,¢, k', t - 1))

0 otherwise
e'=1k'=1
+ kz—:l {1 if 35, Observe(B, g, j,e,k',t —1) } ) _
= 0 otherwise
w=-1
Z NumWeapon(B, g, w',t)) +i-1
w'=1

Command Message m Implemented in Battalion B, g before time ¢:

Mimp(B,g,m,t) =
((Cmsgs[B, m].Time + Army{B, g].MediaDelay
+RecDelay(B, g, RecT(B, g,m)) + QueDelay(B, g, m)
+Army([B, g].ProcDelay) < t)A
(Cmsgs[B, m].Dest = g)

Delay due to message receipt at battalion B, g at time t:
oo if NumRec(B, g,t) — ComJam(B,g,t) <0

Army|[B,g]. RecRate

umRec(B,9,t)~ComJam(B,g,t

RecDelay(B, g,t) =
otherwise

Number of jammed receivers in battalion B, g at time ¢:

ComJam(B,g,t) =
NArmy[~B]
Z min(NumJam(—B, e, t), Army[—B, e].CommJamPriority[g])
ex=l
Army[-B, e].CommJamEffx

Army[~B,¢].CommJamRadius—/(~B,e(t=1)=78,4(t~ 1)) 4(y~B..(t=1)—yB,4(t-1))?
max 0' Army[-E,e].CommJun'Radiua 2 22 )

Delay due to message queuing of command message m in Battalion B, g:
Duration 1 if CmdSum(B, g, m,t) + ReptSum(B, g, m,1)

QueDelay(B,g,m) = Z > NumProcess(B,g,t — 1)

t=RecT(B.9.m) | ( otherwise
Time command message m is received at battalion B, g¢:
RecT(B, g, m) = Cmsgs[B, m).Time + Army[B, g].MediaDelay
Time delay for report message from battalion B, f to be transmitted to battalion B, g:

RepT(B, g, f) = Army|[B, f].SendRate + Army[B, g]. MediaDelay
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Number of command messages, other than m being processed by battalion B, g at time £:

(0 if (m = n) V (Cmsgs[B, n].Dest # g)V
(t < RecT(B, g,n)A

NCmsgs{B) Cmsgs[ B, m].Priority > Cmsgs[B, n].Priority)
CmdSum(B,g, m,t) = Z < V(Cmsgs[B, n].Time > t)V
n=1 (RecT(B, g,n) + Army[B, g].ProcDelay < t)

| 1 otherwise
Some opposing squadron exists and is observed by a squadron of B, g, at time ¢:

SomeObserve(B, g,t) =
(3e,1 < e < Narmy[-B], Army[-B, e].Squadrons > 0 A EObserve(B, g, ¢,t))

Some opposing squadron in battalion - B, e, exists and is observed by some squadron of B, g
at time ¢.

EQbserve(B, g,e,t) =

(3k,1 < k < Army[—B, ¢].Squadrons, Endurance(=B, e, k,t) > 0A
(35,1 € j < Army[B, f].Squadrons,

Endurance(B, f,j,t) > 0 A Observe(B, g, j, ¢, k,1)))

Number of report messages being processed by battalion B, g at time t, while message m may be
queued:

(0 if (Army[B, f].Report # g)V
(Yt',t — RepT(B, g, f) — Army{B, g].ProcDelay
<t' <t-— RepT(B,y, f),
_ ~SomeObserve(B, f,t'))V
ReptSum(B,g,m,t) = Z_; \ (SomeObserve(B, f,t — RepT(B, g, /)N
= Army[B, f].Priority < Cmsgs{B, m].Priority)

NArmy[B]

| 1 otherwise
Battalion B, ¢ is active:

Active(B, g) =((Duration > 0) A (Mainloop € {0...Duration})A
(B € {TRUE, FALSE}) A (NArmy[B] > 0)A
(g9 € {1...NArmy[B]}) A (Army{B, g].Squadrons > 0)A
(3i,1 < i < Army|[B, g].Squadrons,
Endurance(B, g, i, Mainloop) > 0))

Altitude at position (z,y) in Terrain grid (p, ¢):

Terrain[p,q) —Terrain[p+ 1,4¢]-
Alt(p,q,z,y) ={ Terrain[p, ¢ + 1]+Terrain[p + 1,9 + 1] xTxy|+
Params . XDelta x Params.Y Delta

(¢ + 1)(Terrain(p, g]—Terrain[p + 1, q])
Params.XDelta

¢(Terrain[p,q + 1] —Terrain[p+ 1,q+ 1])—
Xzrj+

(p + 1)(Terrain[p, g]—Terrain(p, ¢ + 1])
Params.Y Delta

(p(Terraian+ 1,q] ~Terrain[p+ 1,9 + 1])— )
xyl|+

(p + 1)((q + 1)Terrain([p, q] — gTerrain(p, ¢ + 1])—
p((g + 1)Terrain[p + 1, q] — gTerrain[p + 1,¢ + 1])
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Background Intensity at position (z,y) in Terrain grid (p, ¢):

Bl(p,q,z,y) =

Terrain[p + 1, ¢ + 1] — Terrain[p + 1, q]

(Terrain[p, q + 1] — Terrain(p, q] +

2(Params.XDelta)

Terrain[p + 1, q] — Terrain(p, q]

(Tetrain[p + 1,9+ 1] — Terrain[p, ¢ + 1]+

2(Params.YDelta)
x Parains.ISlopeFactor+

Params.JAltFactor Sarams.IMeanAlt—Alt(p g,z.y) .

Params.IMeanAlt

Params.IX x z + Params.IY x y 4+ Params.IC
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Failure Region Definitions

1.1: Incorrect handling of NumCas when Army.Squadrons=0 initially
Condition I:

Duration > 0 A (3B, B € {true, false}, NArmy[B] > 0
Condition II:

(39,1 < g < NArmy|[B], Army{B, g].Squadrons = 0))
Condition III:True

1.2: Update always implements commands ready at the same time in
CMsgs array order

Condition I:

Active(B, g)A

(3m,n,1 < m < NCmsgs[B),1 < n < NCmsgs[B], m < nA
Mimp(B, g, m, Mainloop) A ~Mimp(B, g, m, Mainloop — 1)A
Mimp(B, g, n, Mainloop) A ~Mimp(B, g, n, Mainloop — 1)

Condition II:
Cmsgs[B, m].Priority < Cmsgs[B, n].Priority A Cmsgs[B, m].msg # Cmsgs[B, m].msg
Condition III:

(Bi,1 <i < NCrnsgs[B],i #mAi# nA
Mimp(B, g, i, Duration) A ~Mimp(B, g, ¢, Mainloop — 1)))

1.3: Over-restrictive check: positive dWX
Condition I:Params.NumWEvents > 0
Condition II:

3i,1 < i € Params.NumWEvents, Weather{i].dWX < 0
Condition III:True

55




1.4: Over-restrictive check: positive dWY
Condition I:Params.NumWEvents > 0
Condition II:

3i,1 < i < Params.NumWEvents, Weather[i].dWY < 0
Condition III:True

1.5: Garbage value in FixSuppl when Fix Supplies exhaused
Condition It

Active(B, g)A
(34,1 < j < Army{B, g].Squadrons, Casualty(B, g, j, Mainloop))
Condition II:

Army[B,g].Squadrons
Z Repair(B, g,i, Mainloop) | > Army[B, g].FixSuppl

=1

Condition III:

(Ai, 1 <i < NCmsgs{B], Mimp(B, g, i, Duration) A ~Mimp(B, g, i, Mainloop — 1))

1.6: Spurious input check requiring IAF > 0
Condition I:True

Condition II:Params.IAltFactor < 0

Condition III:True

1.7: Spurious Input check requiring NumWEvents > 0
Condition I:True

Condition II:Params. NumWEvents < 0

Condition III:True
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1.8: Negative NW value

Condition I:

3B.g,¢,t, Active(B, g) A Active(—B,e) A 1 < t < MainloopA
(3j,k,1 <k < Army[-B, e].Squadrons A 1 < j < Army[B, g].SquadronsA
Endurance(B, g, j,t) > 0 A Endurance(—B, e, k,t) > 0 A Observe(B, g, j, e, k,t))A
Params. NumWTypes > 1

Conditicn II:

3,1 < i < Params.NumWTypes, Army[B, g]. WeapPriority[e, ] < 0V
NumW eapon(B, g, 1, Mainloop)
< (NumWeapon(B, g, i, Mainloop — 1) — NumWeapon(B, ¢, i, Mainloop)+
Mainloop NArmy[~B] /min(| {k’ 3 3j, Observe(B, g,j,¢,k',n— 1)} |,
Z Army[B, g]. WeapPriority[e’. i,
n=1 e'=1 NumWeapon(B, g,1,n))
NumW eapon(B,g,i,Mainloop—1)

Condition III:

(Am,1 < m < NCmsgs[B)], Mimp(B, g, m, Duration) A ~Mimp(B, g, m, Mainloop — 1))A
(Am,1 < m < NCmsgs{-B], Mimp(—B, e, m, Duration)A
-~ Mimp(-B, e, m, Mainloop — 1))

1.9: PSentListLoc sends out of range squadron to SquadAlive
Condition I:

Active(B, g) A Active(—~B, ¢} A Active(B, f) A Army|[B, f].Report = gA
(3¢,1 < t < Duration,

t = Mainloop — RepT(B, f,g) — Army[B, g].ProcDelay
_ Army[B, g].RecRate A
NumRec(B,g9,Mainloop—Army[B,g]. ProcDelay

(3k,1 < k < Army[-B, ¢].Squadrons, (3j,1 < j < Army[B, f].Squadrons,
Observe(B, f, j,e, k,t) A Endurance(—=B, e, k,t) > 0))

Condition II:

(3m,1 < m < NCmsgs{—B], (~-Mimp(—-B, e, m,t)) A Mimp(—B, e, m, Mainloop)A
Army[—B, ¢].Squadrons > Cmsgs(—~B, m].msg.Squadrons))

Condition III:True
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1.10: Restriction that SquadIntensity>0
Condition I:

( 3B, B € {true, false}, NArmy[B] > 0A
(39,9 € {1...NArmy[B]}, Army[B, g}.Squadrons > 0
A(3j,7 € {1..Army[B, g).Squadrons},

condll
Army[B, g].SquadIntensity(j] < 0)))
Condition III:True

1.11: Restriction that FixSuppl > 0
Condition I:

( 3B, B € {true, false}, NArmy[B] > 0A
(39,9 € {1...NArmy[B]}, Army[B, g].Squadrons > 0

Condition II:
Army|B, ¢).FixSuppl))
Condition III:True

1.12: Segmentation fault when squadron leaves Terrain grid
Condition L: Active(B, g)
Condition II:

(35,1 < j < Army(B, g].Squadrons, Endurance(B, g, j, Mainloop) > 0A
(XB,g,j(Mainlcop) < 0V X4 j(Mainloop) > Params.XDelta x MaxTerrainV
Ys 4.;(Mainloop) < 0V Yp,,,;(Mainloop) > Params.YDelta x MaxTerrain))

Condition III:True

1.13: Weapon use functions misordered
Condition I:

3B, g, e, Active(B, g) A Active(—B, e)A
(3%,1 < k¥ < Army[-B, e].Squadrons, Endurance(—B, ¢, k£, Mainloop) > 0A
(3j,1 € j < Army[B, g].Squadrons, Observe(B, g, j, e, k, Mainloop — 1)))

Condition II:True
Condition III:

{¥ | (3j,Observe(B, g, j, e, k', Mainloop))}

# {k" | (3j,Observe(B, g, j, e, k"', Mainloop — 1)) }A

(37,1 € j < Army|B, g].Squadrons, Endurance(B, g, j, Duration) > 0)A
(3k,1 € k < Army[—B, e).Squadrons, Endurance(—B, ¢, k, Duration) > 0)
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1.14: Observation list reversed, causes error in firing
and

1.15: Unneccesary addition of one to target list subscript in arguments
to SetLLCoords

and

1.16: Unneccesary adding of one to weapon subscript in arguments to
SetLLCoords

and

1.26: Improper targeting due to misordered observation list
Condition I:

Active(B, g) A Active(-B, e)A

(3k,1 < k < Army[-B, €].Squadrons, Endurance(—B, ¢, k, Duration) > 0A
(37,1 < j < Army(B, g).Squadrons, Endurance(B, g, j, Mainloop) > 0A
Observe(B, g, j, e, k, Mainloop — 1))) A Params. NumWTypes > 1

Condition II:

(3k',1 < k' < Army[—-B, e].Squadrons, Endurance(—~B, e, k', Mainloop — 1} > 0A
(34, Observe(B, g, j, ¢, k', Mainloop — 1))A
(z-B,e.k'(Mainloop) # £, x(Mainloop) V y.p . i(Mainloop) # y-5,.¢(Mainloop)))

Condition III:

| {k 3 (35, Observe(B, g, j, ¢, k, Mainloop))} |>

min(Army[B, g]. WeapPriorityle, 1], NumWeapon(B, g, 1, Mainloop))A
(Army[B, g]. Weapon[1].Damage # Army[B, g]. Weapon[2]. DamageV
Army[-B, e]. WeapSensativity[1] # Army[~B, e]. WeapSensativity[2])A
(Am,1 < m < NCmsgs[-B],

Mimp(-B, e, m, Duration) A ~Mimp(-B, e, m, Mainloop))
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1.17: Accepts Army.Squadrons=0 as valid data
Condition I:

(3B, B € {true, false}, NArmy[B] > 0

Condition II:Army(B, g].Squadrons = 0)
Condition ITI: True

1.18: TerrMoveTM returns unstable value if battalion leaves terrain grid
Condition L:Active(B, g)
Condition II:

(XB,g(Mainloop) < 0V Xg 4(Mainloop) > Params.XDelta x MaxTerrainV
Yp 4(Mainloop) < 0 V Yp ,(Mainloop) > Params.YDelta x MaxTerrain)

Condition III:

Duration > MainloopA
(Ai, 1 <1< NCmsgs[B), Mimp(B, g, i, Duration) A ~Mimp(B, g, i, Mainloop — 1))

1.19: NumCas not cleared by command message
Condition I:

Active(B, g)A
(31,1 < i < NCmsgs[B), Mimp(B, ¢, 1, Mainloop) A ~Mimp(B, g, i, Mainloop — 1))

Condition II:
35,1 < j € Army[B, g}.Squadrons, Casualty(B, g, j, Mainloop)
Condition III:True
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1.20: NW>0 when KF<0
Condition I:

Active(B, g) A NArmy[-B] > 9 A Params.NumWTypes > 0A
(3, 1< i< Params.NumWTypes,
( Army[B, g]. Weapon[i]. NumWeapon > 0)A
( Army[B, g]. Weapon[i].UseLimit > 0)A
( Army([B, g]. Weapon[i].Range > 0)A
(3e, 1< e < NArmy[-B], Army[—B, e].Squadrons > 0A
(3k, 1<k < Army[-B, ¢].Squadrons,
(37, 1< j < Army[B, g].Squadrons,
Endurance(~B, e, k, Mainloop) > 0A
Endurance(B, g, j, Mainloop) > 0A
Observe(B, g, j, e, k, Mainloop — 1) A InRange(B, g, i, ¢, k, Mainloop)

Condition II:(Army[B, g]. Weapon(i].FireRate < 0)
Condition III:

(Army(B, g]. Weapon(i]. Damage # 0) A (Army[-B, e]. WeaponSensativity[i] > 0)A
(Duration > Mainloop)A

(ABr,1 < r < NCmsgs{—B],

Mimp(~B, e, r, Duration) A ~Mimp(-B, e, r, Mainloop — 1))))
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1.22: Report Message processed ahead of command message with equal
priority, receipt time
Condition I:

Active(B, g) A Active(—~B, e) A Active(B, f)A
(3¢,1 < i < NCmsgs[B], Mimp(B, g, i, Mainloop) A ~Mimp(B, g, i, Mainloop — 1)A
Army[B, f].Report = g A(3t,1 < t < Duration,
(t = Mainloop — Army[B, g].ProcDelay — Army[B, g].MediaDelay
~Army[B, f].SendRate — 1)A
(3k,1 < k < Army[-B, €].Squadrons, Endurance(—B, e, k,t) > 0A
35,1 < j < Army[B, f].Squadrons, Observe(B, f, j, e, k,t)))

Condition II:Army[B, f].Priority = Cmsgs[B, i].Priority
Condition III:
(NCmBS!![B] { 1if Mimp(B, g, m, Mainloop) A ~Mimp(B, g, m, Mainloop — 1))

0 otherwise
> NumProcess(B, g, Mainloop))

m=1

1.23: Invalid width, height when squadron leaves grid
Condition I: Active(B, g)
Condition II:

(35,1 < j < Army|[B, g].Squadrons, Endurance(B, g, j, Mainloop) > 0A
(XB,q,;(Mainloop) < 0V Xp 4 j(Mainlocp) > Params.XDelta x MaxTerrainV
YB 4,j (Mainloop) < 0V Yp 4 ;(Mainloop) > Parains.YDelta x MaxTerrain))

Condition III:
{ Ai, 1 <i < NCmsgs[B], Mimp(B, g, i, Duration} A ~Mimp(B, g, i, Mainloop — 1))
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1.28: Observations and Weapon coordinates cleared by command mes-
sages
Condition I:

Active(B, g)A
(3i,1 € i < NCmsgs|[B), Mimp(B, g, i, Mainloop) A ~Mimp(B, g, i, Mainloop — 1))

Condition II:

Active(—B, e)A

(3i, 1 << Params.NumWTypes,
(NumWeapon(B, g, i, Mainloop) > 0A
(Army[B, g]. Weapon(i].FireRate > 0)A
(Army[B, g]. Weapon[i]. UseLimit > 0)A
(Army[B, g]. Weapon(i].Range > 0)A

(3k, 1 < k < Army[-B, ¢].Squadrons,

(35, 1 < j < Army(B, g).Squadrons,
Endurance(—B, ¢, k, Mainloop) > 0A
Endurance(B, g, j, Mainloop) > 0A
Observe(B, g, j, e, k, Mainloop — 1) A InRange(B, g, i,¢, k, Mainloop — 1)

Condition III:

(Army[B, g). Weapon[i]. Damage # 0) A (Army([—-B, e]. WeaponSensativity[i] > 0)A

(Duration > Mainloop + 1) A (~Casualty(—B, e, k, Mainloop))A

0.5 > Endurance(ﬂle,k,Mainloop)—DamagetB,c,k,Mdn@p)-{-Damage(wB,e,k,Mainloop—1)/\
: Army[=B,e].Endurance(k]

(=3r,1 < r < NCmsgs[-B],

Mimp(-B, e, r, Duration) A ~Mimp(=B, e, r, Mainloop — 1))))
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1.27: Enemy instead of current position in observation jamming
Condition I:

Active(—B, e) A Active(B, g)A
(3k,1 < k < Army[-B, e].Squadrons,
(34,1 < j < Army|[B, g].Squadrons,
Endurance(—B, e, k, Mainloop) > 0A
Endurance(B, g, j, Mainloop) > 0 A BigEnough(B, g, j,e,k,t) A Clear(B,g,j,¢,k,t)

Condition II:

Params.SampleRate > 2A
(z-p,.(Mainloop) # zg 4(Mainloop)V
y-B,.(Mainloop) # yg 4(Mainloop))A
z9j = zB,g,j{(t —1) Aygj = yBg,;(t — 1)A
zek = z.p c1(t — 1) Ayek = y-p . i(t — 1A

BI(a',c' zek yek l!—Armzi-vB,e|‘S’guacllx'ltenuit![k| _
a’ ¢ . zek yek

Params.SampleRate

Z ((WO(zek, yek, Mainloop) x Army|B, g].VWEflec

n=1

(.. [(z~B,es(Mainloop — 1) — zek)?+ , :
0 if \/ %y :“ ((M:::lozg— 1)) _ ;:k))2 > Army[~B, e').ObsJamRadius
NArmy[-~ B} nE.e
4
e'=1 ,(a:..s,,:(Ma.inloop —1) — zek)’+
V (y-B,er(Mainloop — 1) — yek)?
Army[~B '] ObaJamRadius x Army[-B, ¢'].ObsJamEffect otherwise

\
)) <Army[B, g].ObsMinContrast{j])
Condition ITI:True

1.28: Allocated fixing exceeds NumFixersxFixRate
Condition I:

Active(B, g) A (34,1 < j < Army[B, g].Squadrons, Casualty(B, g, j, Mainloop)
Condition II:

(Endurace(B, g, j, Mainloop) — Army|B, g]. Endurancel[j}) >
(Army[B, g).FixRate x NumFiz(B, g, Mainloop)

Condition III:

(Endurance(B, g, j, Mainloop) + Army(B, g].FixRate x NumFiz(B, g, Mainloop))
< Army[B ¢] Endurance[j] A

2
(Am, 1 < m < NCmsgs[B], Mimp(B, g, m, Duration) A ~Mimp(B, g, m, Mainloop))
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APPENDIX C

FAILURE REGION-VARIABLE INCIDENCE MATRICES

The tables in this appendix contain the results of the analysis of the failure re-
gions of the faults from Shimeall and Leveson’s study (Shimeall and Leveson,
1991). The failure regions are contained in a technical report (Shimeall, 1991).

The rows of the table are labeled with program dimensions. The columns are
labeled with failure region numbers. A plus (+) after a failure region number indi-
cates that multiple faults had exactly the same failure region; the data for the failure
region analysis were entered only once in the table.

The table entries are of the form: | 5. The “I" is an artifact of the initial analysis
method and is no longer of importance. The number, e.g. 5, gives the lowest num-
bered failure region to which that failure region is identical in its bounds for the giv-
en program dimension.
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APPENDIX D

FAILURE REGION-VARIABLE (;PI;CE:IDENCE MATRIX ANALYSIS
C

#include <stdio.h>
#define NUMVARS 70 .
#define NUMREG 50

main()

{
char line[2048];
int regid[NUMREG];
int similar (NUMVARS] [NUMREG];
int identical [NUMVARS] [NUMREG];
int graph [NUMREG] {[NUMREG] [NUMVARS];
int I11[NUMREG] [NUMREG];
int S$11[NUMREG] [NUMREG];
int C11[NUMREG] [NUMREG];
int NOO [NUMREG] [NUMREG];
float Ijaccard[NUMREG] [NUMREG];
flcat Sjaccard[NUMREG] [NUMREG];
float Cjaccard{NUMREG] [NUMREG];
int IOO0[NUMVARS];
int SO0 [NUMVARS];
int COO[NUMVARS];
int IjaccardCluster [NUMREG];

" int SjaccardCluster [NUMREG];
int CjaccardCluster [NUMREG];
float IjaccardvValue [NUMREG];
float SjaccardvValue[NUMREG];
float CjaccardValue [NUMREG];
int templ, tempZ, temp3;
float templf, temp2f, temp3f;
int 1n, col, i, j, k, £ , maxline, maxreg;
char status;

/***** initialize arrays **rrrrrrrarasy
for (i=0; i<=NUMVARS; i++)
{

I00{i] = 0;
s00(i] = O;
Co0(i] = Oy

for (j=0; Jj<=NUMREG; j++)
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{
identicall[i] [j]1=0; similar{il (j]1=0;
}
}
for (i=0; i<=NUMREG; 1i++)
{
regid([i]=0;

IjaccardCluster(i] = 2*NUMREG;
SjaccardCluster(i] = 2*NUMREG;
CjaccardCluster(i] = 2*NUMREG;

for (j=0; Jj<=NUMREG; j++)
{
I11(1){31=0;
S11(i][ji=0;
Cl1(1]{]j1=0;
NOO{i] [3j]=0;
}
}
1n=0; maxreg = 0;
if (fgets(line, 2048, stdin)==NULL) exit(1l);

/* parse the region numbers corresponding to the columns */
col=1l; /* skip leading tab */
i=0;
while (col<strlen(line))
{
i++; £=0;
while (linelcol]>='0' && line[col]l<= '9")
{
f = £¥10 + line[col] - '0°'; col++;
}
regid(il=f;
if (i > maxreg) maxreg=ij;
/* skip rest of field */
while(line{col]!="\t's& col<strlen(line)) col++;
col++;
}
/* now parse the body of the table */
while (! feof (stdin))
{

ln++; i=1; /* increment var, reset region */

if (fgets(line, 2048, stdin)==NULL) break;
line[strlen(line)-1]='\0"; /* clear \n from line */
col=0;

while (col < strlen(line)&& line(col]!='\t")
Col++; /* skip line label */
col++; /* move to start of first field */
while (col < strlen(line))
{
while (line[col]=="\t"') /* skip over empty fields */
{
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col++; 1i++;
}
if (line[col]!='\0") /* 1if at end of line, get out of locp */
{

status=line{col];

col++; /* grab I1/S/U */
if (line([col]l!="'\t")
{
£=0; /* parse for region number after I or S */

while (line([col]l>='0' && line[col]<='9")
{

f=f * 10 + line{col] - '0'; col++;
}

/* store entry in appropriate table */

if (status == '1"'")
{

if (identical{ln] ({f] < f && identical[ln][f] > 0)

identical{ln] (regid[i]] = identical[ln](f];
else identical(ln}{regid[i}]=%f;
if (similar{ln] (f]!=0)
similar[ln] [regid(i]]=similar(1ln] {£f];

}
else if (status == 'S')
{

if (identical(ln][f]<f && identical(ln][£]>0)

similar(ln] [regid{i}]=idertical(ln][f];

else similar(ln] [regid(i]]1=£;
}
else if (status == 'U') /* treat as isolated identical */
{ identicall[ln] [regid[i]] = regid[i]:
}

} else if (status == 'U') /* treat as isolated identical */
identical(ln] {regid[i]] = regidl[i];
while (line([col]l!="\t' && col<strlen(line))
col++; /* skip rest of entry */

}
}
maxline = 1ln;
}
/* determine if occurances are identical, similar, or coincedental */

for (i=2; i<= maxreqg; i++ ) /* compare regions pairwise */
for (j=1; j<=(i-1); j++)
{
for (k=1; k<= maxline; k++) /* for each pair of regions,
consider each variable */
{
/* if the variable occurances are identical, graph = 3) */
if( ( identical[k][regid[j]] != 0)
&& ( identical(k]([regid{j]] == identicallk] (regid[i]] ) )
graphiregid(i]] [regid(j]][k] = 3;
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else /* if the variable occurances are similar, graph = 2) */

if( ( similari{k] [regid(i]] != 0)
&& (similar[k][regid[i]] == regid(j] ) )
graph(regid(i]]{regid(jl]{k} = 2;
else /* if the variable occurances are coincedental,
graph = 1) */
if( ( identicallk][regid(j]] != ©
Il similar (k] {regid[j]] != 0 )
&8 identical (k) [regid(i]] = 0
|| similar(k] [regid[i]] != 0 ) )
graph({regid[i]] [regid[j]] (k] = 1;

else /* the variables are not coincedent in this
pair of regions, graph = 0 */
graph(regid{i]][regid{j]] [k} 0;

}
}

/* compute proximity indices and ccefficients */

for (i=2; i<= maxregqg; i++ ) /* compare regions pairwise */
for (j=1; j<=(i-1); j++)
{
for (k=1; k<= maxline; k++) /* for each pair of regions,
consider each variable */
{

if( graph(regid[i]] {regid{j)] (k] == 3 ) Ill([regid([i]][regid(j}]++; /
* variables in regions i, j that are identical */
if( graphlregid(i]] (regid[j]l] (k] == 1) Cll{regid{il]l]([regid(j]]++; /
* variables in regions i,j that are conincedental*/
if( identical(k] [regid[j]] == O
&& similar(k][regid[j]] == 0 /* variables that appear in
&& identical(k] [regid(i]]) == 0 /* neither region i nor j */
&& similar (k] {regid(i]] == 0 )

NOO{regid{i]] (regid[j]I++;
}

Ijaccard[regid([i]] [regid[j]] = (1.0 * (Ill{reqgid[i]][regid(j]])) /
(1.0 * ( maxline - NOO[regid([i]](regid([j]}] ) );
Cjaccard(regid[i]] [regid{j]] = (1.0 * (Cll{regid{i]][regid(j]]))

/ (1.0 * ( maxline - NOO[regid([i]])[regid([3jl] ) );
}

/*****************************order Jaccard CoefflClentS **t******tw/

templf = 1.0;
temp2f 0.9999;

/r*x*x+x*Tdentical coefficients*** xr*rdrrdkurrstdsy
while(templf >= 0.0)
{
for (i=2; i<= 21; i++ ) /* compare regions pairwise */
for (j=1; j<=(i-1); j++)
if( (Ijaccard{regid(i]][reqgid[j]] <= terplf) s&&
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(Ijaccard{regid([i]] (regid(j]] > temp2f) )
{

if(Ill[regid{i]} [regid[j]] == 0)
IO0[(maxline-NOO([regid([i]] [regid[3]]) 1++;

else

printf("Ijaccard([%d] [$d] = %f , Fraction = %d / %d \n",
regid(i}, regid(j],Ijaccard([regid(i]l] [reqgid(]j]],
I11[regid([i] ] [regid[j]], (maxline-N0O([regid(i]] (regid([j]]1));
f=NUMREG + 1; /* determine the order in which the */

for (k=1; k<=NUMREG; k++) /* regions appear */

if (IjaccardCluster{k] == regid[i]) f=k;

if (f > NUMREG)
for (k=1; k<=NUMREG; k++)

{
if (IjaccardCluster (k] > NUMREG)

{

TjaccardCluster[k] = regid(i];
Ijaccardvalue(k] = Ijaccard(regid[i]][regidI[jll};
}

if (IjaccardCluster[k] == regid{i]) break;

}
f=NUMREG + 1;
for (k=1; k<=NUMREG; k++)
if(IjaccardCluster(k] == regid[]j]) £f=k;
if(f > NUMREG)
for (k=1; k<=NUMREG; k++)
{
if{IjaccardCluster[k] > NUMREG)

{

IjaccardCluster{k] = regid(j}l;
IjaccardvValue[k] = Ijaccardi{regid{il](regid[j]};
}

if(IjaccardCluster (k] == regid{j]) break;

}
}
templf = temp2f;
temp2f -= 0.0001;
}
for(i=1;i<=maxline;i++) printf("I100({%d] = %d \n",1i,I00(i]);
for(i=1;1i<=21;i++)
printf("IjaccardCluster[%d] = %d , IjaccardvValue(%d] = %f \n",
i, IjaccardCluster(i]),i, Ijaccardvalue(il]);

templ=21;
templf = 1.0;
temp2f = 0.9999;

/r**x+*x*Coincidental coefficientgr**rrtssrrrsrhssny
while(templf >= 0.0)

{
for (i=2; i<=templ; i++ ) /* compare regions pairwise */
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for (j=1; Jj<=(i-1); j++)
if( (Cjaccard{regid[i]] [regid{j]l] <= templf) &&
(Cjaccard{regid[i]] [regid(j]] » temp2f) )
{

printf("Cjaccard{%d] [%d] = %f , Fraction = %d , %d \n",
regid{i], regid(3]]},Cjaccard(regid(i]] [reqgid(]jl],
Cll{regid(i]]{regid(j]], (maxline-NQC|[regid[i]] [zegid[ill));
f=NUMREG + 1; /* determine the order in which the */
for (k=1; k<=NUMREG; k++) /* regions appear */
if (CjaccardCluster (k] == regid(i]) f=k;
if(f > NUMREG)
for (k=1; k<=NUMREG; k++)
{
if (CjaccardCluster (k] > NUMREG)
{
CjaccardCluster (k] = regidl[il];
Cjaccardvalue (k] = Cjaccardi{regid([i]] {regid[i]];
'
if(CjaccardCluster (k] == regid[i]) break;
}
f=NUMREG + 1;
for (k=1; k<=NUMREGC; k++)
if(CjaccardCluster(k] == regid(j]) f=k;
1f(f > NUMREG)
for (k=1; k<=NUMREG; k++)
{
if(CjaccardCluster (k] > NUMREG)
f
CjaccardCluster (k] = regid{j];
Cjaccardvalue[k] = Ciaccard[regid[i}][reqgid{j]i;
}
if(CjaccardCluster (k] == regid(j]) break;

}
}
templf = temp2f;
temp2f -= 0.0001;
}
for(i=1;i<=templ; i++)
printf ("CjaccardCluster(%d] = %d , CjaccardValue(%d] = %f \n",
i,CjaccardCluster{i], i, Cjaccardvalue(il);

exit (0);

}
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APPENDIX E

THRESHOLD GRAPH EDGE LISTINGS

This appendix lists the weights of the edges in the graphs for the four experi-
mental versions. Only nonzero edges are listed. The weights are presented in two
forms: a decimal fraction and a ratio of two integers. The ratio represents the exact
weight; the decimal fractions were used for ordering the magnitudes of the edges.

1[11]is the coefficient for the Identical dimension.

C[]1]is the coefficient for the Coincidental dimension.

J[1[]is the coefficient for the Composite dimension.

Also presented is the order in which the nodes were connected in the graph
and the threshold values at which they were connected, i.e., the value of their larg-
est weighted incident edge.

Node[ ] gives the number of the failure region being connected in the graph.

I1[],C[], and J [] give the threshold value at which the first edge is added to
that node.




VERSION 1

IDENTICAL
I(23])[12] = 0.700000 ; 7 / 10
I(11] (10} = 0.500000 ; 1 / 2
I(17}(10] = 0.500000 ; 1 / 2
I[17){11] = 0.500000 ; 1 / 2
I[22][9) = 0.466667 ; 7 / 15
I[4]{3] = 0.333333 ; 1/ 3
If{10)([1] = 0.333333 ; 1/ 3
I{113{1] = 0.333333 ; 1/ 3
I{17](1] = 0.333333 ; 1/ 3
I1(28){23] = 0.333333 ; 5/ 15
I(28] (5] = 0.307692 ; 4 / 13
I{19](5] = 0.285714 ; 2 / 7
I[(18)(12] = 0.250000 ; 3 / 12
I(23]1{18] = 0.250000 ; 3 / 12
I(23][5] = 0.230769 ; 3 / 13
I{271([20)] = 0.214286 ; 6 / 28
I[12](5]) = 0.181818 ; 2 / 11
I[(13])(8]) = 0.181818 ; 2 / 11
I1(28]({19] = 0.181818 ; 2 / 11
I1{14]1[13]) = 0.142857 ; 2 / 14
I(28][12]) = 0.133333 ; 2 / 15
I{19])[2] = 0.125000 ; 1 / 8
I(27])(13] = 0.120000 ; 3 / 25
I1{20](8] = 0.117647 ; 2 / 17
I[25)[20] = 0.105263 ; 2 / 19
I(271(8] = 0.103448 ; 3 / 29
I(531([21 = 0.1000C0 ; 1 / 10
I(18j(2} = 0.100000 ; 1 / 10
I(19)(12} = 0.100000 ; 1 / 10
1{19]1(18] = 0.100000 ; 1 / 10
I{20}(18] = 0.100000 ; 2 / 20
I[23]1(19] = 0.090909 ; 1 / 11
I(8]1[2] = 0.083333 ; 1/ 12
I{12][2] = 0.083333 ; 1 / 12
I(18])(5] = 0.083333 ; 1 / 12
I[23]{2) = 0.083333 ; 1 / 12
I{25]1[13) = 0.083333 ; 1 / 12
I(19](9] = 0.076923 ; 1 / 13
I{28}([2}) = 0.076923 ; 1 / 13
I[27]({14] = 0.068966 ; 2 / 29
I(14](8] = 0.066667 ; 1 / 15
I1{20]([13) = 0.066667 ; 1 / 15
I(22}1(19] = 0.066667 ; 1 / 15
I({25)(8] = 0.066667 ; 1 / 15
1(28](18] = 0.066667 ; 1 / 15
I(28](25] = 0.066667 ; 1 / 15
I{9]{8] = 0.062500 ; 1 / 16
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I[25]([23)
I{20](19]

I(201(2]
I{20](5]
I{2z](8]

I1[25]([14] =

I[20]([12]
I[23](20]
I{28]1(20]
I(27]1([25)

ALL OTHER EDGES =

Node{1]
Node [2]
Node 3]
Node (4]
Node [5]
Node[6]
Node{7]
Node [8]
Node [9]
Node [10]
Node[11])
Node[12]
Node[13}
Node([14]
Node[15]
Node[16]
Node [17]
Node [18]
Node (19]
Node [20]
Node (21])
Node {22]
Node [23]

=2

]

i}

i

)

(]

1
1
1
1
2

9
4
3

= 0.062500 ; 1 / 16
= 0.058824 ; 1 / 17
0.055556 ; 1 / 18
0.055556 ; 1 / 18
0.055556 ; 1 / 18
0.055556 ; 1 / 18
0.052632 ; 1 / 19
0.050000 ; 1 / 20
0.047619 ; 1 / 21
= 0.031250 ; 1 / 32
0.000000
3 ,I[1] = 0.700000
2 ,I[{21 = 0.700000
1 ,I(3] = 0.500000
0 ,I{4] = 0.500000
7 ,I[5] = 0.500000
2 ,1(6] = 0.466667
,I[7] = 0.466667
,I{8] = 0.333333
,I[9] = 0.333333
=1 ,I[10] = 0.333333
28 ,I(11] = 0.333333
=5 ,I[12] = 0.307692
19 ,I[13] = 0.285714
18 ,I[14] = 0.250000
27 ,I[15] = 0.214286
20 ,I[16] = 0.214286
13 ,I[17] = 0.181818
8 ,I[18] = 0.181818
14 ,I{19] = 0.142857
2 ,I[20] = 0.125000
25 ,I[21] = 0.105263
6 ,I1[22] = 0.000000
7 ,I[23] = 0.000000




VERSION 1
COINCIDENTAL

C[14]{8] = 0.533333 ; 8 / 15
C[20][14] = 0.526316 ; 10 / 19
Cl711(3] = 0.500000 ; 1 / 2
WAREY = 0.500000 ; 1 / 2
Cl11]([10] = 0.500000 ; 1 / 2
C{171[10] = 0.500000 ; 1 / 2
cf{17]{11] = 0.500000 ; 1 / 2
C(23](14] = 0.500000 ; 8 / 16
C(28]({25]1 = 0.466667 ; 7 / 15
C(13](9] = 0.416667 ; 5 / 12
C[25}[19] = 0.416667 ; 5 / 12
C(25])19] 0.411765 ; 7 / 17
C[25}1[8] 0.400000 ; 6 / 15
C[25][14] = 0.388889 ; 7 / 18
C[23]([9) = 0.375000 ; 6 / 16
C{14](9] = 0.368421 ; 7 / 19
Cf25][22]) = 0.368421 ; 7 / 19
C[23][13] = 0.363636 ; 4 / 11
C[22][13] = 0.357143 ; 5 / 14
C(20](8] = 0.352941 ; 6 / 17
C[28]1(9] = 0.352941 ; 6 / 17
C(10](1] = 0.333333 ; 1/ 3
C(11](1] = 0.333333; 1/ 3
C{13]{1] = 0.333333; 2/ 6
C{13](12]) = 0.333333 ; 3/ 9
C[17](1] = 0.333333 ; 1/ 3
cl22][2] = 0.333333 ; 5/ 15
Cl[22])[14]) = 0.333333 ; 7 / 21
C[23)[8] = 0.333333 ; 5 / 15
C[23)(22] = 0.333333 ; 6 / 18
C(25][13] = 0.333333 ; 4 / 12
C[28](13] = 0.333333 ; 4 / 12
C[25](20] = 0.315789 ; 6 / 19
c[28]1(14] = 0.315789 ; 6 / 19
C[28](22] = 0.315789 ; 6 / 19
crolie] = 0.312500 ; 5 / 16
C(14]1(12] = 0.312500 ; 5 / 16
C(257(23] = 0.312500 ; 5 / 16
c{28] [8] 0.312500 ; 5 / 16
c{18]{2] = 0.300000 ; 3 / 10
Ccr91i2] = 0.285714 ; 4 / 14
c[18][8] 0.285714 ; 4 / 14
C[139]([5] = 0.285714 ; 2 / 7
Cl20)[9] = 0.285714 ; 6 / 21
C{25]1(2] = 0.285714 ; 4 / 14
C[25]1(5])] = 0.285714 ; 4 / 14
C(22](8] = 0.277778 ; 5 / 18
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C[23]1([19)
c(28](19]
Cl19] (14}
C{20](13]
C[(221(9]
Cl22]1{20}
Cci8ll[2]
Cl14][2]
Cc[18]19]
cri9jizl
crisl(sl
C119](13]
C{231(2]
Cc(23] (18]
ci25]1[18]
Cl19] (9]
c[281(2]
c{13](2]
C[13]1(5]
c(18]11[14}
Cl22][18]

Cl14][13]) =

Cl[27][14)
C[9]1(5]

cl19](18]
C[20] (1]

Clrz2z2)1[19]
C[23][20]
Cl271[12]
C[28] (18]
Cc[28][20]
cf{12](9]
C(25]11[12]
cisifl]

Cl13]18]
c{18](13)
C[23][1]

C[(27])[23) =

C[14][5]
Cl122] (5]

C{131[10] =

Cl13](11]
C[17]1(13}
c(19][10]
Cl19]1111]
Cl19]1(17]
c(22](12]
c(28] (11
C{91(1]
C(251 (1]
Cc[811s]

“wonononow
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.272727
.272727
.266667
.266667
.266667
.260870
.250000
.250000
.250000
.250000
.250000
.250000
.250000
.250000
.250000
.230769
.230769
.222222
.222222
.222222
.222222
.214286
.206897
.200000
.200000
.200000
.200000
.200000
.200000
.200000
.190476
.187500
.187500
.181818
.181818
.181818
.181818
.178571
.176471
.176471
.166667
.166667
.166667
.166667
.166667
.166667
.166667
.166667
.153846
.153846
.142857
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C{101 (5]
Cl11]13]
Cl[171[5]
cf19](1]
C(27]1(20]
cl12] (8]
Cl1411(1]
C[20][10]}
c(20](11]
cl[20][17]
cl22](1]
Cl2]1(1]
c{511(1]
cf1z21{10]
Cl12)[11]
Cc[1711[12]
C{20]{19}
Ccl12] (1]
Ccl[20] (2]
C{20]1([5]

c[27) (18] =

C[20][12]
cisl(2]
crislf1l]
Cl{19][12]
c[28](27]
Cl27119]
cf10](8]
cl11]) (8]
cr17j18]
C(231(10]
C[23][11]
C[23]{17]
cl27][22]
C[27])(10]
Cl27][11}
C[27]1 (17}
Cc(18](5]
C(27]1[1]
c[28][10]
C[28][11]
C[28]1(17]
c[10] (9]
cl11] (9]
C[17]19]
C(25] (10}
C25] (i1}
C[25][17]
Ci27]1{19]
C{27] (5]
C[14][10]
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.142857
.142857
.142857
.142857
.142857
.133333
.133333
.133333
.133333
.133333
.133333
.125000
.125000
.125000
.125000
.125000
.117647
.111111
111111
111111
.107143
.105263
.100000
.100000
.100000
.096774
.093750
.0903909
.090909
.090909
.030909
.090909
.090909
.088235
.086957
.086957
.086957
.083333
.083333
.083333
.083333
.083333
.076923
.076923
.076923
.076923
.076923
.076923
.076923
.074074
.066667
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~1 3

~2

15
15
15
15
15

= 0 0 0

18
18
28
19
10
10
10
31
32
11
11
11
11
11
11
34
23
23
23
12
24
12
12
12
13
13
13
13
13
13
26
27
15
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Cl141[11]

C[17}1114] =

C[22][10]
c{22]11(11]
cl221117]
Cc[28][12]
Cc[28] (23]
Cc{27]1(25])
C[201[18]
Cc[27] (2]

Cl27] (8]

ALL OTHER

Node[1]
Node (2]
Node [3]
Node {4]
Node[5]
Node {6]
Node [7]
Node (8]
Node[9]
Node[10]
Node[11]
Node [12]
Node[13]
Node{14]
Node [15]}
Node[16])
Node[17]
Node (18]
Node {19]
Node [20])
Node{21]
Node[22])
Node [23]

I

= 0.066667 ; 1 / 15
0.066667 ; 1 / 15
= 0.066667 ; 1 / 15
= 0.066667 ; 1 / 15
= 0.066667 ; 1 / 15
= 0.066667 ; 1 / 15
= C.066667 ; 1 / 15
= 0.062500 ; 2 / 32
= 0.050000 ; 1 / 20
= 0.035714 ; 1 / 2
= 0.034483 ; 1 / 29
EDGES = 0.000000
14 , C[1] = 0.533333
8 , C[2] = 0.533333
20 , C[3] = 0.526316
=7, C[4] = 0.500000
3, C[5] = 0.500000
=4, C[6] = 0.500000
11 ,C[7] = 0.500000
10 ,C(8] = 0.500000
17 ,C[9] 0.500000
23 ,Cf{10] = 0.500000
28 ,C[11] = 0.466667
25 ,C[12] = 0.466667
13 ,C(13] = 0.416667
9 , Cl[l4] = 0.416667
19 , C[15] = 0.416667
22 ,C[16]) = 0.368421
1, C[17] = 0.333333
12 ,C(18] = 0.333333
2, CI[19] = 0.333333
18 ,C[20} = 0.300000
5, Cl[21] = 0.285714
27 , C[22] = 0.206897
6 , C[23] = 0.000000




VERSION 1
COMPOSITE

J[11]({102] = 1.000000 ; 2 / 2
J[{17]1(10) = 1.000000 ; 2 / 2
J{17]({11] = 1.000000 ; 2 / 2
1/71
7T/ 1

J[22][9] = 0.733333 ; 1 5
J[231([12] = 0.700000 ; 0
J[10] (1] 0.666667 ; 2 / 3
J(11]1[1) = 0.666667 ; 2 / 3
J{171(1] = 0.666667 ; 2 / 3
J[14]1[8] = 0.600000 ; 9 / 15
J[19]1([5]) = 0.571429 ; 4 / 7
J{25)({8) = 0.533333 ; 8 / 15

J[28]}[25] = 0.533333 ; 8 / 15
J(20] (8] = 0.529412 ; 9 / 17

J(20}[14]) = 0.526316 ; 10 / 19
J[71{3}) = 0.500000 ; 1 / 2
J[71[4] = 0.500000 ; 1 / 2
J[231[14] = 0.500000 ; 8 / 16
J({23](18] = 0.500000 ; 6 / 12
J(28]119] = 0.454545 ; 5 / 11
J[25][14]) = 0.444444 ; 8 / 18
J[25][20] = 0.421053 ; 8 / 19

J(13][9] = 0.416667 ; 5 / 12
J[25][13] = 0.416667 ; 5 / 12
J[25][19) = 0.416667 ; 5 / 12
J{25](9]) = 0.411765 ; 7 / 17
J[18]{2) = 0.400000 ; 4 / 10

J{28) (23] = 0.400000 ; 6 / 15
J{9] (8] = 0.375000 ; 6 / 16
J{19][2] = 0.375000 ; 3 / 8
J[23][9]) = 0.375000 ; 6 / 16

J[25]1 (23] = 0.375000 ; 6 / 16
J(14][9) = 0.368421 ; 7 / 19
J[251(22] = 0.368421 ; 7 / 19
J{13](8] = 0.363636 ; 4 / 11
J[23][13) = 0.363636 ; 4 / 11
J[231[19) 0.363636 ; 4 / 11
J{14]}[13] = 0.357143 ; 5 / 14
J[22]({13] = 0.357143 ; 5 / 14
J(27]1(20] = 0.357143 ; 10 / 28
J[28][9] = 0.352941 ; 6 / 17
J[4](3] = 0.333333 ; 1/ 3
J[8]1([2] = 0.333333 ; 4 / 12
J{131([1] = 0.333333 ; 2 / 6
J[13](12] = 0.333333 ; 3/ 9
J[20}[13}) = 0.333333 ; 5 / 15
J{2<712] = 0.333333 ; 5/ 15

]
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J[22]118] = 0.333333 ; 6 / 18
J[22]1[14] = 0.333333 ; 7 / 21
J[23][2] = 0.333333 ; 4 / 12
J{23](8] = 0.333333 ; 5 7/ 15

J[231(22] = 0.333333 ; 6 / 18
J[28][13) = 0.333333 ; 4 / 12
J[28][14] = 0.315789 ; 6 / 19
J[28](22] = 0.315789 ; 6 / 19
J{14]1[12] = 0.312500 ; 5 / 16

J{28]1[8] = 0.312500 ; 5 / 16

J[19}[9] = 0.307692 ; 4 / 13
J[(28]1(2] = 0.307692 ; 4 / 13
J[28]1 (5] = 0.307692 ; 4 / 13
J{19]1 (18] = 0.300000 ; 3 / 10
J{91{2] = 0.285714 ; 4 / 14

J[18][8] = 0.285714 ; 4 / 14
J{201([9] = 0.285714 ; 6 / 21
J[25]1(2] = 0.285714 ; 4 / 14
J[25]1([5] = 0.285714 ; 4 / 14
J{27]1(14] = 0.275862 ; 8 /
J[19][14] = 0.266667 ; 4 /
J[22][19] = 0.266667 ; 4 / 15
J[28]1(18] = 0.266667 ; 4 /
J{22](20] = 0.260870 ; 6 /
J{141({2] = 0.250000 ; 4 / 16
J[18]1([5] = 0.250000 ; 3 / 12
J(181{9] = 0.250000 ; 4 / 16
J[18] (12} = 0.250000 ; 3 / 12
JI[19]} (8] = 0.250000 ; 3 / 12

J(191(13] = 0.250000 ; 2 / 8
J{23)([20] = 0.250000 ; 5 / 20
J[25] (18] = 0.250000 ; 4 / 16
J[28][20] = 0.238095 ; 5 / 21
J{14][5] = 0.23529%4 ; 4 / 17
J(231(5] = 0.230769 ; 3 / 13
J[13)[2] = 0.222222 ; 2 / 9
J[13]1[5) = 0.222222 ; 2 / 9
J{18](14] = 0.222222 ; 4 / 18
J(22]{18] = 0.222222 ; 4 / 18
J[51(2] = 0.200000 ; 2 / 10
J{9][5] = 0.200000 ; 3 / 15
J[19)j[12] = 0.200000 ; 2 / 10

J[20}[1] = 0.200000 ; 3 / 15
J{27][12] = 0.200000 ; 5 / 25
J{28](12] = 0.200000 ; 3 / 15
J[12][9) = 0.187500 ; 3 / 16
J{25][12] = 0.187500 ; 3 / 16
J(8][1] = 0.181818 ; 2 / 11
J[12] (5] = 0.181818 ; 2 / 11
J(18](13] = 0.181818 ; 2 / 11
J{23}[1} = 0.181818 ; 2 / 11




J{27)(23] = 0.178571 ; 5 / 28
J[20]1(19]) = 0.176471 ; 3 / 17
J{22]1(5] = 0.176471 ; 3 / 17
J[13]1{10] = 0.1656667 ; 1 / &
JI13](11) = 0.166667 ; 1 / 6
JI171113) = 0.166667 ; 1 / 6
J[19][10] = 0.166667 ; 1 / 6
JI191[{11; = 0.166667 ; 1 / 6
JI191(17] = 0.166667 ; 1 / 6
J[20][2] = 0.166667 ; 3 / 18
J(20](5] = 0.166667 ; 3 / 18
J[22]1{12) = 0.166667 ; 3 / 18
J{28]([1] = 0.166667 ; 2 / 12
J{20]1[12] = 0.157895 ; 3 / 19
J[91({1] = 0.153846 ; 2 / 13
J{251(1] = 0.153846 ; 2 / 13
J[20]([(18] = 0.150000 ; 3 / 20
J(8)[5] = 0.142857 ; 2 / 14
J{101(5] 0.142857 ; 1 / 7
JI1171(5] 0.142857 ; 1 / 7
J[17]1(5] = 0.142857 ; 1 / 7
J[191(1] = 0.142857 ; 1 / 7
J[2711[(8) = 0.137931 ; 4 / 29
J[12]1(8] = 0.133333 ; 2 / 15
J(141(1] = 0.133333 ; 2 / 15
J[20)([10] = 0.133333 ; 2 / 15
J(20](11] = 0.133333 ; 2 / 15
J(201(17] = 0.133333 ; 2 / 15
J{22111) = 0.133333 ; 2 / 15
J[21(1] = 0.125000 ; 1 / 8
JI5](1} = 0.125000 ; 1 / 8
J[12)[10] = 0.125000 ; 1 / 8
J[12]1[11] = 0.125000 ; 1 / 8
J{17]1(12] = 0.125000 ; 1 / 8
J[27]1{13] = 0.120000 ; 3 / 25
J{12}[1} = 0.111111 ; 1 / 9
J{271(18) = 0.107143 ; 3 / 28
J[18} (1] = 0.100000 ; 1 / 10
J[28]1(27} = 0.096774 ; 3 / 31
J{271(9] = 0.093750 ; 3 / 32
J[27]1([25] = 0.093750 ; 3 / 32
J[10](8] = 0.090909 ; 1 / 11
J(111([8] = 0.09090% ; 1 / 11
J(171(8] = 0.090909 ; 1 / 11
J(23}[10] = 0.090909 ; 1 / 11
J(23](11) = 0.090909 ; 1 / 11
J{231(17] = 0.090909 ; 1 / 11
J[27])(22] = 0.088235 ; 3 / 34
J[27]1(10] = 0.086957 ; 2 / 23
J(271[11) = 0.086957 ; 2 / 23
J{271(17} = 0.086957 ; 2 / 23
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0.083333 ;

Jiiz2] (2] ;12
Ji{27]({1] = 0.083333 ; 2 / 24
J(28](10] = 0.083333 ; 1 / 12
J[28]{11] = 0.083333 ; 1 / 12
J{ag8](17] = 0.083333 ; 1 / 12
J[{10][9] = 0.076923 ; 1 / 13
J[11}[9] = 0.076923 ; 1 / i3
J{171(9] = 0.076923 ; 1 /7 13
J[25][10] = 0.0763923 ; 1 / 13
J[25] ({11} = 0.076923 ; 1 / 13
J[25][17] = 0.076923 ; 1 / 13
J(27]1[19] = 0.076923 ; 2 / 26
J(27]{5] = 0.074074 ; 2 / 27
J[14}{10] = 0.066667 ; 1 / 15
J{14][11] = 0.066667 ; 1 / 15
J{17]1(14] = 0.066667 ; 1 / 15
J[221{10] = 0.066667 ; 1 / 15
J[22][11] = 0.066667 ; 1 / 15
J[22](17] = 0.066667 ; 1 / 15
J[271[2] = 0.035714 ; 1 / 28

ALL OTHER EDGES = 0.000000
Node[1l] = 11 , J[1] = 1.0C0000
Node[2] = 10 , J[2] = 1.000000
Node (3] = 17 , J[3] = 1.000000
Node (4] = 22 , J[4] = 0.733333
Node[5] = 9 , J([5] = 0.733333
Nowe (6] = 23 , J[6] = 0.700000
Node[7] = 12 , J[7] = 0.700000
Node([8] = 1 , J[8] = 0.666667
Node[9] = 14 , J[9] = 0.600000
Node(10] = 8 , J[10] = 0.600000
Node([1l] = 19, J[11l] = 0.571429
Node([12] = 5 , J[12] = 0.571429
Node([13] = 25, J{13] = 0.533333
Node{14] = 28 , J[14] = 0.533333
Node[15] = 20 , J[15] = 0.529412
Node(16] = 7 , J[16] = 0.500000
Node(17]) = 3 , J[17] = 0.500000
Node[18] = 4 , J[18] = 0.500000
Node[19] = 18 , J[19] = 0.500000
Node (20] = 13, J{20] = 0.416667
Node{21] = 2 , J{21] = 0.400000
Node (22] = 27 ,J[22] = 0.357143
Node([23] = 6 ,J[23] = 0.000000




VERSION 2
IDENTICAL

I'8j[7] = 0.636364 ; 7 / 11

I{21}1{2C8] = C.571429 ; 4 / 7
I(2z2).2C] = 0.571429 ; 4 / 7
I{2271(21] = 0.571429 ; 4 / 7
I123]11(20}) = 0.571429 ; 4 / 7
I(23]1(21] = 0.571429 ; 4 / 7
I(23})(22] 0.571429 ; 4 / 7
I(20](19]) = 0.428571 ; 3 / 7
I{21]1(19] = 0.428571 ; 3 / 7
1{22]019} = 0.428571 ; 3 / 7
I(23)}{19]) = 0.428571 ; 3 / 7
I{16](15] = 0.400000 ; 2 / §
I{17])[15] = 0.400000 ; 2 / 5
I[17][(16] = 0.400000 ; 2 / §
I(18]([15] = 0.400000 ; 2 / 5
I{18)[16] = 0.400000 ; 2 / S
I{18](17]) = 0.400000 ; 2 / 5
I(30}(6] = 0.333333 ; 2 /7 6

I[4]([3] = 0.300000 ; 3 / 10

I(15])[14] = 0.200000 ; 1 / 5
I[16]1(14]) = 0.200000 ; 1 / 5
I[17])[14]) = 0.200000; 1 / 5
I{18]{14] = 0.200000 ; 1 / 5
I(131[5) = 0.153846 ; 2 / 13

I{51(3] = 0.133333 ; 2 / 15
I[5)({4] = 0.133333 ; 2 / 15

I(13](2] = 0.111111 ; 1 / 9
I(30](2] = 0.111111 ; 1 / 9
I[30]1[3) = 0.111111 ; 1 / 9
I[(30](4) = 0.100000 ; 1 / 10
I(3]({2] = 0.090909 ; 1 / 11
I{4)[2] = 0.090909 ; 1 / 11
I(6]1(2] = 0.090909 ; 1 / 11

TI6]1(3] = 0.090%09 ; 1 / 11

I[13]([3] = 0.090909 ; 1 / 11
I{13]([4]) = 0.090909 ; 1 / 11
Il6](4] = 0.083333 ; 1 / 12
I(7][1] = 0.076923 ; 1 / 13
I{8][1] = 0.076923 ; 1 / 13
I[30][S] = 0.071429 ; 1 / 14
I{5]1[2] = 0.066667 ; 1 / 15
I[6]1(5] = 0.062500 ; 1 / 16
JLL OTHER EDGES = 0.000000

Node (1! =
Node[2] =
Node{3] =
Node [4] =
Node {5] =
Node[6] =
Node[7] =
Node (8] =
Node (3] =
Node{10] =
Node([1l1l] =

Node[12] =

Node [13]

Node[14] =
Node (15] =

Node [16] =
Node[17] =

Node (18] =
Node[19] =

Node [20]
Node [21]
Node [22)
Node[23]
Node [24] =
Node [25] =
Node [26]
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.636364

636364

.57142%
.571429
.571429
.571429
.428571
.4000¢0C¢C

.400000

.400000
.400000
.333333
.333333
.300000
.300000
.200000
.153846
.153846
.111111
.076923
.000000
.000000
.000000
.000000
.000000
.000000




Ccl2zj(13]
C{23](13]
Cf14] (13
C[15] [13]
Cl16](13]
C{171(13] =

18] [13]
C{15]1[14]
C[16][14]
C(171114]
clris](14]

crer{v]
C[25](53]
C[5)[1]
cl19](z]

c(20] (2} =

c[21]{2)
cr2z2j[z2}
Cf231(2]
C[30] (6]

cf22j(s] =

C(25] (1]
C(14]1(1]
C[15] (1]
Cl16][1}]
cri71{1)
c[18] (1]

C[20][19]
C(21](19]
Cf22](19]
C[23}[19]

C251171]
C(25](8]
Cl{14] (2]
C15] (2]
Cl16]1(2]
cri71(z]
C[17] (5]
cl18](2]

Cr19][14)]
C{19][(15]
Ccri91t1e]
C{19]([17]

[eNeNeoNoNoNeNelNolelNolNoolo R

VERSION 2
COINCIDENTAL

.500000
.500000
.5006000

.500000
.428571
.428571
.428571

.400000

fl
[eNeNeoNeNeNoNoNoNojoololole]

0.363636 ;
0.352941
0.333333 ;
.333333
.333333
.333333
.333333
.333333

.307692
.307692
.285714
.285714
.285714
.285714
.235714
= 0.285714
0.285714
0.285714
0. 285714
.2777178
.277778
.250000
.250000
.250000
.250000
.250000
.250000

[eNeNoNeNoNeNo o]

[ ]

.333333 ;

.500000 ;

.428571 ;
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C[191(18]) = £.250000 ; 2 / 8
C{20] (141 = 0.250000 ; 2 / 8
C[20j{15] = 0.250000 ; 2 / 8
Cl20] (18] = 0.250000 ; 2 / 8
C{20]({17] = 0.250000 ; =2 / 8
C{2C¢)[18] = 0.250000 ; 2 / 8
C{211(14] = 0.250000 ; 2 / 8
C{21]({15] = 0.250000 ; & « 8
C[21]1{16] = 0.250000 ; 2 / 8
C(211(17] = 0.250000 ; 2 / 8
C[211(18] = 0.25000C ; 2 / 8
C(22]1(14]1 = 0.250000 ; 2 / 8
C[22]([15] = 0.250000 ; 2 / 8
c{22](16] = 0.250000 ; 2 / 8
C[22][17) = 0.250000 ; 2 / 8
C{22](18] = 0.250000 ; 2 / 8
C(23][14] = 0.250000 ; 2 / 8
C{23}1[15] = 0.250000 ; 2 / 8
Cl[z3)([16] = 0.250000 ; 2 / 8
C[23}{17] = 0.250000 ; 2 / 8
C[23]1(18] = 0.250000 ; 2 / 8
C(261(3] = 0.250000 ; 2 / 8
C[26][5] = 0.250000 ; 3 / 12
C[26][13] = 0.250000 ; 2 / 8
C[26](19] = 0.250000 ; 2 / 8
C{26][20] = 0.250000 ; 2 / 8
C[26][21] = 0.250000 ; 2 / 8
C(26][22] = 0.250000 ; 2 / 8
C[26] (23] = 0.250000 ; 2 / 8
Cl71(5] = 0.222222 ; 4 / 18
C[81[5] = 0.222222 ; 4 / 18
Cl131({1] = 0.222222 ; 2/ 9
C(13]([2) = 0.222222 ; 2 / 9
Ci26])(4] = 0.222222 ; 2/ 9
C[19]{5] = 0.214286 ; 3 / 14
C[20]([5] = 0.214286 ; 3 / 14
C[21](5] = 0.214286 ; 3 / 14
C[23]([5) = 0.214286 ; 3 / 14
C[4](1] = 0.200000 ; 2 / 10
Cl16]1(15) = 0.200000 ; 1 / 5
C{171([15] = 0.200000 ; 1 / 5
C(171(16] = 0.200000 ; 1 / 5
Cc({18](15] = 0.200000 ; 1 / 5
C(181(16] = 0.200000 ; 1 / 5
C(18]1({17] = 0.200000 ; 1 / S

C[10][6] = 0.166667 ; 1 / 6
C{111(6] = 0.166667 ; 1 / 6
C[71(1] = 0.153846 ; 2 / 13
C(8](1] = 0.153846 ; 2 / 13
C({131({5] = 0.153846 ; 2 / 13
C[14])[5) = 0.153846 ; 2 / 13




C{14}(7] = 0.153846 ; 2 / 13
C[14][8] = 0.153846 ; 2 / 1
C[151({5] = 0.153846 ; 2 / 13
Cl{151{7] = 0.153845 ; 2 / 13
C711511[8] = 0.153846 ; 2 / 13
Cl16](5] = 0.153846 ; 2 / 13
C{i6;17] = 0.153846 ; 2 / 13
C{16](8) = 0.153846 ; 2 / 13
C{17](7] = 0.153846 ; 2 / 13
C[17)(8] = 0.153846 ; 2 / 13
Cc[{181{5] = 0.153846 ; 2 / 13
Cr181{7] = 0.153846 ; 2 / 13
c(18]({8] = 0.153846 ; 2 / 13
C{301(7] = 0.153846 ; 2 / 13
C{30]1[8] = 0.153846 ; 2 / 13
C(21](20] = 0.142857 ; 1/ 7
C(22]({20] = 0.142857 ; 1 / 7
C[{22]1[21) = 0.142857 ; 1 / 7
C[23]{20] = 0.142857 ; 1 / 7
C[23])[21] = 0.142857 ; 1 / 7
C(23][22] = 0.142857 ; 1 / 7
C[25](14] = 0.142857 ; 2 / 14
C(25]1([15] = 0.142857 ; 2 / 14
C[25](16] = 0.142857 ; 2 / 14
C{25](17] = 0.142857 ; < / 14
C(251(18]) = 0.142857 ; 2 / 14
C[(30}[14] = 0.142857 ; 1 / 7
C[30)1[15) = 0.142857 ; 1 / 7
C[30)[16] = 0.142857 ; 1 / 7
C[30]([17] 0.142857 ; 1/ 1
C(30]1(18] = 0.142857 ; 1 / 7
C[30](25] 0.142857 ; 2 / 14
C[30](26] = 0.142857 ; 1 / 7
C{7}(6] = 0.133333 ; 2/ 15
c(8](6] = 0.133333 ; 2 / 15
C[13)(7) = 0.133333 ; 2 / 15
C[13){8] = 0.133333 ; 2 / 15
C[7]1[4) = 0.125000 ; 2 / 16
C[8][4] = 0.125000 ; 2 / 16
Cc{25)(6] = 0.125000 ; 2 / 16

C[25)(13] = 0.125000 ; 2 / 16

C(26] (1] = 0.125000 ; 1 / 8
C(30j(1] = 0.125000 ; 1 / 8
C(25]14) = 0.117647 ; 2 / 17
cl[14][6] = 0.111111 ; > / 9
cl15)feé) = 0.111111 ; 1 / 9
C(16] (6] 0.111111 ; 1/ 9
cri71(6] = 0.111111 ; 1 / 9
c(18) (6] = 0.111111 ; 1 / 9
cr26]1(2] = 0.111111 ; 1/ 9
c(261(e6] = 0.111111 ; 1 / 9
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C(201(1]
c{21] (1]
Cl22] (1]
Ccl23]) 1]
cr41(2]

Cl13] (4]
C(13](s6]
Cr19][3]
C[19]1(6]
C(20] (3]
C[20] [6]
Cf{21113]

non o
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Cc[z21]16] =

C{22] (3]
ciz2z}] (6]
C[23] (3]
C[23]1(6]
C[19] (4]
C[20] (4]
Cl21] [4]
C[22] 4]
C[23] [4]
C[26])1{7]

Bononononow o n
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clze} (8] =

cis12] =
ci{51[4] =
C(26](25]
cr71(2] =
C{7113]

crs) (2]

c(8] (3]

Cr19]17]
Ccr19} (8]
Cr201 (7]

]

QOO0 il OO

cfzo] (8}l =

Cr211(7])

]

L111111
L111111

111t

OO0 O o

G..liill
g.li1rri:

.100000
.100600 ;
.100000 ;

.100000
.100000
.100000
.100000
.100000
.100000
.100000
.100000
.100000
.100000

0.090909 ;

.090909
.090909
.090909
.090908%
.090909
.090%09
.090909
.090909
.C90909
.0%0909
.090909
.090909
.083333
.083333
.083333
.083333
.083333
.071429
.071429

.066667 ;
.066667 ;
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.062500 ;
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OO O OO

.062500
.062500
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cl25]{22
C[25] (23
JLL OTHE

Node [1]
Node[2]
Node[3]
Node [4]
Node [5]
Node [6]
Node [7]
Node (8]
Node [9]
Node [10)
Node [11)
Node(12]
Node [13]
Node {14]
Node[15]
Node (16]
Node (17]
Node (18]
Node {19}
Node [20]
Node [21]
Node (22}
Node [23]}
Node (24]
Ncde [25]

= 0.062500 ; 1 / 16
= 0.062500 ; 1 / 16
= 0.062500 ; 1 / 16
= 0.062500 ; 1 / 16
= 0.062500 ; 1 / 16
0.058824 ; 1 / 17
= 0.058824 ; 1 / 17
= 0.058824 ; 1 / 17
] = 0.058824 ; 1 * 17
] = 0.058824 ; 1 / 17
] = 0.058824 ; 1 / 17
] = 0.058824 ; 1 / 17
R EDGES = 0. 0000 0
=19, C[1] = 0.500000
=13, Cf2} = 0.500000
= 20 , CI[3] = 0.500000
= 21, C([4] = 0.500000
= 22, CI[5] = 0.500000
23 , C(6) = 0.500000
=14 , C{[7} = 0.428571
15, CI[8] = 0.428571
=16 , C(9] = 0.428571
= 17, C(10] = 0.428571
=18 , C[1l1l] = 0.428571
=8, C[l2] = 0.363636
=7, C[13] = 0.363636
=25, C(14] = 0.352941
=5, C{l5] = 0.352941
=1, C[l6] = 0.333333
=2, C{17] = 0.333333
= 30, C(18] = 0.333333
=6, C[19] = 0.333333
= 26 , C[20] = 0.250000
=3, C[21] = 0.250000
=4, C[22] = 0.222222
=10, C[23] = 0.166667
=11, Cl[24] = 0.166667
= 12, C[25] = 0.000000
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VERSION 2 “J[16] (1} = 0.285714 ; 2 / ~
COMPOSITE J(17) (1] = 0.285714 ; 2 / ~
J018} (%) = 0.285714 ; 2 / -
S1251(7] = £.277778 ; 5 . 18
e v e e s 3{251{8} = €.277778 ; 3 . 18
Tta011is; e . J(i4}l2i = 0.250000 ; o 3
J[Zli:LBI - £.714286 ; 5 / - J[lSJ{Ei = O.i:OOOO i : ‘8
J{211020] = ©.714286 ; 5 / Ji16112] = 0.250000 ; 2 /5
J1221{19] = 0.714286 ; 5 / 7 3%i:1[€? Do 2l
J[22]{20] = 0.714286 ; 5 / 7 o= 0. p3 el
J{22](21) = 0.714286 ; 5 / 7 J(181(2] = 0.250000 ; 2 / 8
J(231(19] = 0.714286 ; 5 / 7 J(191114] = 0.250000 ; 2 /3
T1231120] - 0 c14286 » 5 /3 JU19](15] = 0.250000 ; 2 / 8
T3 121] = 0 14086+ 5 v 3 51191(16] = 0.250000 ; 2 / 8
T(331122] - 0 o1a286 » 2 7 7 J1191(17] = 0.250000 ; 2 / 8
J130]16) = 0.566667 ; 4 / 6 J(19]1[18] = 0.250000 ; 2 / 8
J139) (241 = 0600000 ; 3 / 5 J(20](14] = 0.250000 ; 2 / 8
Tlle1114] - 0.600000 1 3 /% J[20](15] = 0.250C00 ; 2 / 8
J1161[15) = 0.600000 ; 3 / 5 J(201(161 = 0.250000 ; 2 / 8
J(171(14] = 0.600000 ; 3 / S JI201117] = 0.250000 7 2 /3
J(17]115] = 0.600000 ; 3 / 5 J[20]{18]) = 0.250000 ; 2 / 8
J(17](16] = 0.600000 ; 3 / 5 Jl211[14} = 0.250000 ;7 2 /'8
J(18](14] = 0.600000 ; 3 / 5 Ji211t121 = 0';28000 ; g / :
ninioamenry e el
J{18][16] = 0.600000 ; 3 / 5 To11 (18] - o 220000 | 2 ) 8
JU18]11171 = 0.600000 ; 3 / 5 ' P2
J119][13} = 0.500000 ; 4 / 8 J{221(14] = 0.250000 ; 2 / 8
J[20){13] = 0.500000 ; 4 / 8 J(221[15] = 0.250000 ; 2 /8
J(211113] = 0.500000 ; 4 / 8 J(221(16] = 0.250000 ; 2 /8
J1221(13] = 0.500000 ; 4 / 8 J{221(17] = 0.250000 ; 2 / ®
11231 113) - 0.200000 . 4 / 8 7(221(18] = 0.250000 ; 2 / 8
1141 113) - 0428571 & 3 /7 J[23][14] = 0.250000 ; 2 / 8
J(151(13] = 0.428571 ; 3 / 7 JI[231(15) = 0.250000 ; 2 / 8
Tl16](13] = 0.428971 » 3 7 7 J(23]116] = 0.250000 ; 2 / &8
U191 (13] = 0. 428571 & 3 7 1 J(23](17] = ©.250000 ; 2 / 8
T1181113] - 0.428571 + 3 7 7 J(23](18] = 0.250000 ; 2 / 8

J(25](5] = 0.352941 ; 6 / 17 J[26] (3] = 0.250000 ; i j ?

= H 2
JI5111] = 0.333333 ; 4 / 12 J(261 (5] = 0.250000 7
31261 (13] = 0.250000 ; 2 / 8
J[131(2] = 0.333333 ; 3 / 9 - .
(261 (19] = 0.250000 ; 2 / 8
J{19)12) = 0.333333 ; 3 / 9 /
J[26](20] = 0.250000 ; 2 / 8
J[201 (2] = 0.333333 ; 3 / 9
J(26](21] = 0.250000 ; 2 / 8
J(211(2] = 0.333333 ; 3 / 9 .
J{26][22] = 0.250000 ; 2 / 8
3{22]12] = 0.333333 ; 3 / 9 .
J126] (23] = 0.250000 ; 2 / 8
J{231(2] = 0.333333 ; 3 / 9
J(7)[1] = 0.230769 ; 3 / 13
J[131(5] = 0.307692 ; 4 / 13
! (81 (1] = 0.230769 ; 3 / 13
J[221(5] = 0.307692 ; 4 / 13 /
J(7)(5] = 0.222222 ; 4 / 18
(251 (1] = 0.307692 ; 4 / 13
J(81(5] = 0.222222 ; 4 / 18
J[41(3] = 0.300000 ; 3 / 10 0.22 _
J J1131(1] = 0.222222 ; 2 / 9
J(141(1] = 0.285714 ; 2 / 7 /
JI15)[1] = 0.285714 ; 2 / 7 J(26114) = 0.222222 5 2 /9
’ ' JU191(5] = 0.214286 ; 3 / 14
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J{201[5]) = C.214.86 ; 3 / 14 Ji15j{s} = Cc.111111 ; 1 / &
J{217 (5] = 0.214286 ; 3 / 14 Jiléj{6] = C.i11111 ; 9
J123]f3; = 0.214286 ; 3 / 14 JIi7l(6) = 0.132111 ; 1 / %
J74T il o= 0.200000 ; 2 / 10 Jilg; {8}l = C.11xx11 ; 1/ 9
2574} = 0.200000 ; 3 / 15 S{ce) i<, = 0,111 ; 2 /9
S4)i27 = 0.181819 ; 2 / L1 Ji2hjle}] = C. 11111 ; 1 7/ 9
J[12.74; = 0.181818 ; 2 /7 11 JI30]{ci = 0.111111 ; 2 + 5
S{L01(8] = 0.166667 ; 1 / 6 JI301{3 = ¢.111111 ; 1 /@
J{ll]{e}] = 0.166667 ; 1 / 6 J{30] (i3] = 0.111111 ; 1 +, 3
S[14] (5] = 0.153846 ; 2 / 13 J{30][19] = 0.111111 ; 1 ., 9
J{14](7} = 0.153846 ; 2 / 13 J[30][20] = C.111111 ; 1 / 3
J(14]{8] = 0.153846 ; 2 / 13 J(30][21] = ©.111111 ; 1 / &
J{15] (5] = 0.153846 ; 2 / 13 J{30]({22) = 0.11111:1 ; 1 / 3
J[15]{7) = 0.153846 ; 2 / 13 J[30]{23) = 0.111111 ; 1 / 3
J[15] (8] = 0.153846 ; 2 / 13 J{2][1] = 0.100000 ; 1 / 10
J[16][5]) = 0.153846 ; 2 / 13 J[3}{1] = 0.100000 ; 1 / 10
J[16) (7] = 0.153846 ; 2 / 13 J{6e] (1} = 0.1060000 ; 1 7/ 10
J{161({8] = 0 153846 ; 2 / 13 J{14]1{4] = 0.100000 ; 1 / 1
J{17}[7] = 0.153846 ; 2 / 13 J(15][4) 0.100000 ; 1 /s 10
J[17}[8] = 0.153846 ; 2 / 13 J(le] (4] = 0.100000 ; 1 / 10
J{181[5] = 0.153846 ; 2 / 13 J{17] (4] 0.100000 ; 1 7/ L0
J(18][7] = 0.153846 ; 2 / 13 J(18][4] = 0.100000 ; 1 / 10
Jil8])({8] = 0.153846 ; 2 / 13 J{1l9][1] = 0.100000 ; 1 / 30
J{30} (7] = 0.153846 ; 2 / 13 J({20] (1] = 0.100000 ; 1 / 10
J{30]{8) = 0.153846 ; 2 / 13 J[21,(1) = 0.100000 ; 1 / 10
J{25]{14] = 0.14285%7 ; 2 / 14 J[22]1[1] = 0.100000 ; 1 / 10
J(25](15] = 0.142857 ; 2 / 14 J{23){1] = 0.100000 ; 1 / 10
J{25}(16] = 0.142857 ; 2 / 14 J[{30] (4] = 0.100000 ; 1 / 10
J[25]([17] = 0.142857 ; 2 / 14 J{3](2] = 0.090909 ; 1 / 11
J{251(18] = 0.142857 ; 2 / 14 J[€}(2]) = 0.090909 ; 1 / 11
J[(30)(14] = 0.142857 ; 1 / 7 J[6]1(3] = 0.090%909 ; 1 / 11
J{30](15] = 0.142857 ; 1 / 7 J[13]1(3] = 0.090909 ; 1 / 11
J[30])(16] = 0.142857 ; 1 / 7 J{13][6] = 0.090909 ; 1 / 11
J[30](17) = 0.142857 ; 1 / 7 J[19] (3] 0.080909 ; 1 /7 11
J(30]1[18] 0.142857 ; 1 /7 7 J({19](6] = 0.0%90909 ; 1 / 11
J[30](25]) = 0.142857 ; 2 / 14 J[20}[3] = 0.050909 ; 1 / 11
J[30]{26] = 0.142857 ; 1 / 7 J(20](6)] = 0.090909 ; 1 / 11
J(5](2] = 0.133333 ; 2 / 15 J{21}1(3] = 0.0%90909 ; 1 / 11
J(5]{3) = 0.133333 ; 2 / 15 J{21](6) = 0.0380909 ; 1 / 11
J[7]1(6]) 0.133333 ; 2 / 15 J[22] (3] = 0.09090% ; 1 / 11
JiB8]1 (6] = 0.133333 ; 2 / 15 J[22] (6] = 0.030909 ; 1 / 11
J{13)1(7) = 0.133333 ; 2 / 15 J[23]1(3] = 0.090909 ; 1 / 11
J{13] (8] = 0.133333 ; 2 / 15 J[23][6] 0.090909 ; 1 / 11
J[7][4]) = 0.125000 ; 2 / 16 Ji6][4] = 0.083333 ; 1 / 12
J[8][4] = 0.125000 ; 2 / 16 J[19][4] = 0.083333 ; 1 / 12
J[25] (6] = 0.125000 ; 2 / 16 J{20]({4] = 0.083333 ; 1 / 12
J[25](13] = 0.125000 ; 2 / 16 J[21](4]) = 0.083333 ; 1 / 12
J{26111] = 0.125000 ; 1 / 8 J[22] (4] = 0.083333 ; 1 / 12
J(30] (1} = 0.125000 ; 1 / 8 J{23](4] = 0.083333 ; 1 / 12
J{251(4] = 0.117647 ; 2 / 17 J(26]11[7} 0.071429 ; 1 / 14
J(14](6] = 0.111111 ; 1 / 9 J[(26) (8] = 0.071429 ; 1 / 14
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JI[30)[5) = 0.071429 ; 1 / 14
J{26]1(25) = 0.066667 ; 1 / 15
J(6](5] = 0.062500 ; 1 / 16
J(71(2] = 0.062500 ; 1 / 16
J(71(3] = 0.062500 ; 1 / 16
J(8}[(2) = 0.062500 ; 1 / 16
J{81{3] = £.062500 ; 1 / 16
J{191{7] = 0.062500 ; 1 / 16
J{io11(8) 0.062500 ; 1 / 16
J{20} (7] C.062500 ; 1 / 16
J{20]1[8] = 0.062500 ; 1 / 16
J(21117] 0.062500 ; 1 / 16
J{21)(8] = 0.062500 ; 1 / 16
J[(22)(7] = 0.062500 ; 1 / 16
J{22]1[8] = 0.062500 ; 1 / 16
J{231(7] = 0.062500 ; 1 / 16
J[23)1[8] = 0.062500 ; 1 / 16
J[25](2) = 0.058824 ; 1 / 17
J[25][3) = 0.058824 ; 1 / 17
J{251(19] = 0.058824 ; 1 / 17
J(251(20] = 0.058824 ; 1 / 17
J[25][21] = 0.058824 ; 1 / 17
J[25]1[22] = 0.058824 ; 1 / 17
J[25])[23]) = 0.058824 ; 1 / 17
JLL OTHER EDGES = (.000000
Node[1] = 8 , J[1] = 1.000000
Node[2] = 7 , J[2] = 1.000000
Node(3] = 20 , J{3] = 0.714286
Node{4] = 19 , J(4] = 0.714286
Node(5] = 21 , J[5] = 0.714286
Node[6] = 22 , J[6] = 0.714286
Node[7] = 23 , J[7] = 0.714286
Node{8] = 30 , J(8] = 0.666667
Node[9] = 6 , J[9) = 0.666667
Node([10] = 15, J[10] = 0.600000
Node([11} = 14 , J[11] = 0.600000
Nodef{12] = 16 , J(12] = 0.600000
Node[13] = 17 , J(13] = 0.600000
Node([14) = 18 , J[14] = 0.600000
Node([15) = 13 , J[15] = 0.500000
Node(16] = 25 , J(16] = 0.352941
Node([17] = 5 , J(17] = 0.352941
Node(18] = 1 , J(18] = 0.333333
Node[19] = 2 , J[{19) = 0.333333
Node{20] = 4 , J[20] = 0.300000
Node([21] = 3 , J(21] = 0.300000
Node([22] = 26 , J(22] = 0.250000
Node[23]) = 10 , J[23) = 0.166667
Node({24] = 11, J[24] = 0.166667
Node(25] = 12 , J{25] = 0.000000
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VERSION 3

IDENTICAL
I144)118] = 0.909091 ; 10 / 11
I(441(7] = 0.615385 ; 8 / 13
I{21[1] = 0.6C0000 ; 3 / 5
I(18](7] = 0.571429 ; 8 / 14
I(33}[32] = 0.500000 ; 2 / 4
I[34}(32] = 0.500000 ; 2 / 4
T(35)(32]}) = 0.500000 ; 2 / 4
I1[(361(32] = 0.500000 ; 2 / 4
I{3711[32] = 0.500000 ; 2 / 4
I1[40](39] = 0.500000 ; 3 / 6
I[(41)(39] = 0.500000 ; 3 / 6
I1[{41][40] = 0.500000 ; 3 / 6
I(42]{39] = 0.500000 ; 3 / 6
I{42)[40] = 0.500000 ; 3 / 6
I{42](41] = 0.500000 ; 3 / 6
I[(45](7]1 = 0.470588 ; 8 / 17
I(45]({18] = 0.470588 ; 8 / 17
I{45}[44] = 0.470588 ; 8 / 17
I(18]({9] = 0.428571 ; 9 / 21
I(26])(5] = 0.428571 ; 3 / 7
I(38](26] = 0.428571 ; 3 / 7
I[34]1(33] = 0.400000,; 2/ 5
I(35](33] = 0.400000 ; 2 / 5
I(35)(34] = 0.400000 ; 2 / 5
I(36]1(33]) = 0.400000 ; 2 / 5
I(36]1{34] = 0.400000; 2 / 5
I[36](35] = 0.400000 ; 2 / 5
I[(37]1{33] = 0.400000 ; 2 / 5
I({37]1(34] = 0.400000 ; 2 / 5
I{37)({35] = 0.400000 ; 2 / 5
I[37][36) = 0.400000 ; 2 / 5
I[9](7] = 0.380952 ; 8 / 21
I1{44](9] = 0.380952 ; 8 / 21
I(45]1(9] = 0.380952 ; 8 /7 21
I[(16)(11} = 0.333333; 2/ 6
I1{26](24] = 0.333333 ; 2/ 6
I(28}[26] = 0.333333 ; 3/ 9
I{38](24] = 0.333333 ; 2/ 6
I(391(38) = 0.333333; 2/ 6
I{40]1([38) = 0.333333 ; 2/ 6
I[41)(38) = 0.333333 ; 2 / 6
I1(42]1(38) = 0.333333; 2/ 6
I{31({2] = 0.285714 ; 2 / 7
I[15)(3]) = 0.272727 ; 3 / 11
I{31(1] = 0.250000 ; 2 / 8
I1{24)(10] = 0.250000 ; 1 / 4
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I(25)(3] = 0.250000 ; 2 / 8
I(25](6] = 0.250000 ; 1 / 4
1138}[5] = 0.250000 ; 2 / 8
I(397(26] = 0.250000 ; 2 / 8
I1(401{26] 0.250000 ; 2 s 8
I(41}[26] = 0.250000 ; 2 /s 8
I[(42])[26] = 0.250000 ; 2 s 8
I1{38]1(28] = 0.222222 ; 2 s 3
I[39}[5] = 0.222222 ; 2 / 9
I{401(S] = 0.222222 ; 2 / 9
I[411(5) = Q0.222222 ; 2 / §
I1[42]([5) = 0.222222 ; 2 / 9
I(61(2] = 0.200000 ; 1 / 5
I[22]([6] = 0.200000 ; 1 / 5
I{23][2] = 0.200000 ; 2 /7 10
I{38){10] = 0.200000 ; 1 / 5
I(39])[10] = 0.200000 ; 1 / 5
I[401(10] = 0.200000 ; 1 / S
I(411(10} = 0.200000 ; 1 / 5
I[42])[10] = 0.200000 ; 1 / 5
I{23]{1} = 0.181818 ; 2 / 11
1[(24])[23] = 0.181818 ; 2 / 11
I{10]([5] = 0.166667 ; 1 / 6
I{221[2) = 0.166667 ; 1 / 6
I(23][12) = 0.166667 ; 2 / 12
1[(241(2] = 0.166667 ; 1 / 6
I{24])[3] = 0.166667 ; 1 / 6
I(25]1(2] = 0.166667 ; 1 / 6
I{25][22] = 0.166667 ; 1 / &
I[26]1[10] = 0.166667 ; 1 / 6
I(32](3] = 0.166667 ; 1 / 6
I{32]({26] = 0.166667 ; 1 / 8§
I[36][3]) = 0.166667 ; 1 / 6
I[(381(4] = 0.166667 ; 1 / 6
I[{22][18]) = 0.153846 ; 2 / 13
I(61{1] = 0.142857 ; 1 / 7
I[24][1) = 0.142857 ; 1 / 7
I[24][5] = 0.142857 ; 1 / 7
I[(331(3] = 0.142857 ; 1 / 7
I(33)(26] = 0.142857 ; 1 / 7
I(34)(3] = 0.142857 ; 1 / ~
I(34](26] = 0.142857 ; 1 / 7
I(35)[3] = 0.142857 ; 1 / 7
I(35]1(26] = 0.142857 ; 1 / 7
I{36][26] = 0.142857 ; 1 / 7
I(37)([3] = 0.142857 ; 1 / 7
I[(371({26] = 0.142857 ; 1 / 7
I[(39]1(4] = 0.142857 ; 1/ 7
I(391(24] = 0.142857 ; 1 / 7
1[40} [4) = 0.142857 ; 1 / 17
1(40)(24] = 0.142857 ; 1 / 7




I[41)([4) = 0.142857 ;
I[4111[24] = 0.142857
I{42]1(4] = 0.142857 ;
I(42]1(24]) = 0.142857
I{43]1(6] = 0.142857 ;
I[43](18] = 0.142857
I(441043] = 0.142857
I[11}(2] = 0.125000 ;
I(11]{6] = 0.125000 ;
I(12])(2] = 0.125000 ;
I[12}[7] = 0.125000 ;
I[(16](2] = 0.125000 ;
I[16](6] = 0.125000 ;
I{22]([1] = 0.125000 ;
I(251(1] = 0.125000 ;
I{26]({3] = 0.125000 ;
I{26](4] = 0.125000 ;
I[28]1({2] = 0.125000 ;
I1[28] (6] 0.125000 ;

I(28](24] = 0.125000
I[43]1(25] = 0.125000

I(11](1} = O0.111111 ;
I1{12]({1] = 0.111111 ;
I{12]}(6] = 0.111111 ;
If12]{11] = C.111111
I{16]{1) = 0.111111 ;
I{161(12] = 0.111111
I{221([11] = 0.111111
I[22][16] = 0.111111
I{231{10] = 0.111111
If251(11] = 0.111111
I[25]{16] = 0.111111
I{28])(1) = 0.111111 ;
1{28](5] = 0.111111 ;
I{28](12] = 0.111111

I(28]1{22]) = 0.111111
I{28])[25] = 0.111111
I(43112] = 0.111111 ;

I(43])[22] = 0.111111 ;
I(45](38] = 0.111111 ;

I{15]{4] = 0.100000 ;
I[(22)([12) = 0.100000
I[24]({15] = 0.100000
I{25](12] = 0.100000
I[(28]}[4] = 0.100000 ;
I{28]1({11] = 0.100000

o
I[28][16] = 0.100000
I{32](15]) = 0.100000
I(39}(28] = 0.100000
I(40](28] = 0.100000
I(41](28] = 0.100000

;

r
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I[42])[28] = 0.100000
I{18](6] = 0.090%909 ;
I{23](6] = 0.090909 ;
I(25]1(15] = 0.09C9¢C¢9
I(26][15] = 0.09C209
I[(333[15] = 0.03090%
I1[(34}[15] = 0.0903909
I[35](15] = 0.090909
I(36][15] = 0.0380909
I{37][15] = 0.090909
1[38])[23] = 0.0390909
I{43](1] = 0.090909 ;
1{43](39] = 0.090909
I(43]1[40] = 0.090909

I[43][41] = 0.090909
I[43])[42] = 0.090909

I(44])(6] = 0.090909 ;
I(12)({9] = 0.086957 ;
I[{15](2} = 0.083333 ;
I(231[5] = 0.083333 ;
I[23)[22) = 0.083333
I(25][1i8] = 0.083333
I1251(23] = 0.083333
I{26][23] = 0.083333
I{28][23] = 0.083333
I{39][23] = 0.083333
I[40][23] = 0.083333
I[{41][23] = 0.083333
I(42)[23] = 0.083333
I{43]1(4] = 0.083333 ;
I[43][11]) = 0.083333
I[{43](16]) = 0.083333
I(43]([28] = 0.083333
I(44]1(2] = 0.083333 ;
I(44](25] = 0.083333
I(15][1) = 0.076923 ;
I{18])([2] = 0.076923 ;
I[{22]({15] = 0.076923
I[(23](3] = 0.076923 ;
I[23](11] = 0.076923
I(23](16] = 0.076923
I[24][18} = 0.076923
I(43](12] = 0.076923
I{44](22] = 0.076923
I(44](24] = 0.076923
I[71(2] = 0.071429 ;
I[7](6] = 0.071429 ;

I(44)[1] = 0.071429 ;

I1[(44](38] = 0.071429 ;

I{7][1] = 0.066667 ;
I[15](11] = 0.066667
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I{16]1(15] = 0.066667 ; 1 / 13 Node[12] = 40 , 1I([12] = 0.50CCCC
I{18][1] = 0.066667 ; 1 / 15 Node[13] = 39 , 1I{13] = 0.50C000C
I[(25](7] = 0.066667 ; 1 / 15 Node(14] = 41 , 1I{14] = 0.500000
I(38]{18] = 0.066667 ; 1 / 15 Node (15} = 42 , 1I{15] = 0.50000C¢C
I[(43][23) = 0.066667 ; 1 / 15 Node[16] = 45, I[16] = 0.470588
I(44)[11] = 0.066667 ; 1 / 15 Node[17] = 9, I[l7] = 0.428571
I(44](16] = 0.066667 ; 1 / 15 Node (18] = 26 , I{l8] = 0.428571
I{18]({11] = 0.062500 ; 1 / 18 Node([19] = 5, I{19] = 0.428571
I(18][16) = 0.062500 ; 1 / 16 Node[20] = 38 , I[20]) = 0.428571
I(22](7] = 0.062500 ; 1 / 16 Node(21l] = 16 , I[21] = 0.333333
I1(231(15] = 0.062500 ; 1 / 16 Node[22] = 11 , 1I[22] = 0.333333
I{28]1(7] = 0.062500 ; 1 / 16 Node([23] = 24, 1I(23] = 0.333333
I1(28]1({18] = 0.062500 ; 1 / 16 Node {24] = 28 , 1I[24] = 0.333333
I[(44] (12} = 0.062500 ; 1 / 16 Node[25] = 3 , 1I[25] = 0.285714
1(44]1(28] = 0.062500 ; 1 / 16 Node[26] = 15, 1I[26] = 0.272727
I[(11]{7} = 0.058824 ; 1 / 17 Node([27] = 10, 1I[27] = 0.250000
I[16][7] = 0.058824 ; 1 / 17 Node[28] = 25 , 1I(28] = 0.250000
1(18]{12) = 0.058824 ; 1 / 17 Node([29] = 6 , 1I[29] = 0.250000
I{43]{7) = 0.058824 ; 1 / 17 Node(30] = 22 , 1I[30] = 0.200000
1(45]1(24] = 0.058824 ; 1 / 17 Node(31] = 23, 1I[31] = 0.200000
I[45](26] = 0.058824 ; 1 / 17 Node([32] = 12 , 1I{32] = 0.166667
I[18}([15) = 0.055556 ; 1 / 18 Node[33] = 4 , I[33]) = 0.166667
I1(23]}([7] = 0.055556 ; 1 / 18 Node(34] = 43, 1I{34] = 0.142857
I{44]11(23] = 0.055556 ; 1 / 18 Node(35] = 13, 1I[35] = 0.041667
I[45])[5) = 0.055556 ; 1 / 18 Node[36] = 17 , I[36] = 0.000000
I[23][18] = 0.052632 ; 1 / 19 Node[37] = 21, 1I([37] = 0.000000
I1[{45][28] = 0.052632 ; 1 / 19

I[45)([39] = 0.052632 ; 1 / 19

I{45](40] = 0.052632 ; 1 / 19

I(45]1(411 = 0.052632 ; 1 / 19

I[45)[42]) = 0.052632 ; 1 / 19

I(45]1(12] = 0.050000 ; 1 / 20

1(22](9] = 0.047619 ; 1 / 21
I[13])[9) = 0.041667 ; 1 / 24
I(431(9] = 0.041667 ; 1 / 24
I(15] (9} = 0.040000 ; 1 / 25
I[(23][9) = 0.040000 ; 1 / 25
JLL OTHER EDGES = 0.000000

Node[1l] = 44 , 1If{l1l] = 0.909091
Node(2] = 18 , 1I[2] = 0.909091
Node (3] = 7 , I[3] = 0.615385
Node(4] = 2 , 1I(4] = 0.600000
Node({S5] = 1, I[(5] = 0.600000
Node(6] = 33 , I[6] = 0.500000
Ncde(7] = 32 , I(7] = 0.500000
Node([8] = 34 , 1I(8] = 0.500000
Node([9] = 35, I[9] = 0.500000

Node(10] = 36 , I{10] = 0.500000

Node(11] = 37 ,

I(11] = 0.500000




VERSION 3
COINCIDENTAL
c{a21][1v] = 1.000000 ; 2 / 2
C[(32]([24] = 0.750000 ; 3 / 4
C[16] ({11} = 0.666687 ; 4 / 6
C[32][17] = 0.666667 ; 2 / 3
Cl[32]({21] = 0.666667 ; 2 / 3
C[{38][4] = 0.666667 ; 4 6
C{33}([24] = 0.600000 ; 3 / 5
C[34)(24] = 0.600000 ; 3 / 5
C(35][24] = 0.600000 ; 3 / 5
C[36][24] = 0.600000 ; 3 / 5
C(37]1(24] = 0.600000 ; 3 / 5
C(15] (4] = 0.500000 ; 5 / 10
C({171(10] = 0.500000 ; 1 / 2
C[21][10} = 0.500000 ; 1 / 2
Cc(24][3] = 0.500000 ; 3 6
C[24](17] = 0.500000 ; 2 / 4
C(24]1(21] = 0.500000 ; 2 / 4
C[25][&] = 0.500000 ; 2 4
C[33]{17] = 0.500000 ; 2 / 4
C[{33]1(21] = 0.500000 ; 2 / 4
C(34]1(17] = 0.500000 ; 2 / 4
C[34][21] = 0.500000 ; 2 / 4
C(351(17] = 0.500000 ; 2 / 4
C(35]([21] = 0.500000 ; 2 / 4
C[(36]{3] = 0.500000 ; 3 / 6
C[36][17] = 0.500000 ; 2 / 4
C(36]1({211 = 0.500000 ; 2 / 4
C[{37]1(17] = 0.500000 ; 2 / 4
C(37]{21] = 0.500000 ; 2 / 4
C[38}[15]) = 0.500000 ; 5 / 10
C(15][5] = 0.454545 ; 5 / 11
C(28]([12] = 0.444444 ; 4 / 9
c(241(4] = 0.428571 ; 3 7/ 7
Cl(39] (4] = 0.428571 ; 3 / 7
Cl40] (4] = 0.428571 ; 3 / 7
Cl41]1([4] =~ 0.428571 ; 3 / 7
Cl42] (4] = 0.428571 ; 3 / 7
C[38](17] = 0.400000 ; 2 / S
C[38]1[21] = 0.400000 ; 2 / 5
C(39]1([(17]) = 0.400000 ; 2 / 5
C[39](21] = 0.400000 ; 2 / 5
C{401(17] = 0.400000 ; 2 / 5
C[40]{21] = 0.400000 ; 2 / 5
C(41][17] = 0.400000 ; 2 / 5
C{41)(21] = 0.400000 ; 2 / 5
C(42]1[17]) = 0.400000 ; 2 / 5

c(42]1(21]) = 0.400000 ; 2 / 5
Cl{45] (9] = 0.380952 ; 8 / 21
C(26](3] = 0.375000 ; 3 / 8
Ci26}[4] = 0.375000 ; 3 / 8
C{381({3] = 0.375000 ; 3 8
Cc{26]([15] = 0.363636 ; 4 / 11
C[39][15] = 0.363636 ; 4 / 11
C[40][15]} = 0.363636 ; 4 / 11
C{41][15] = 0.363636 ; 4 / 11
C(42]1({15] = 0.363636 ; 4 / 11
C(4]({3] = 0.333333 ; 3/ 9
Ci{5]1([3]) = 0.333333 ; 3 / 9
C{5)(4) = 0.333333 ; 3/ 9
c(12](11) = 0.333333 ; 3/ 9
C(16]{12] = 0.333333 ; 3/ 9
C{171{3) = 0.333333 ; 2 / 6
Cl17]1(4) = 0.333333 ; 2/ 6
C[211{3] = 0.333333 ; 2 / 6
C(21](4] = 0.333333 ; 2 / 6
Cl26][17]) = 0.333333 ; 2/ 6
c{26]{21] = 0.333333 ; 2 / 6
C(26][24] = 0.333333 ; 2 / 6
C[28]1(5] = 0.333333 ; 3/ 9
C[32]13) = 0.333333 ; 2/ 6
C({32}(10] = 0.333333 ; 1/ 3
C[32]1(26] = 0.333333 ; 2 / 6
C(38][12] = 0.333333 ; 3/ 9
C(38]1(32] = 0.333333 ; 2 / 6
C[39]{32] = 0.333333; 2/ 6
C(39](38] = 0.333333 ; 2/ 6
C[40}{32] = 0.333333 ; 2 / 6
C({40]1[38] = 0.333333 ; 2 / 6
C[41]1{32] = 0.333333 ; 2 / &
Cl41)(38] = 0.333333 ; 2/ 6
C[42}([32] = 0.333333; 2 / 6
C{42][38] = 0.333333; 2 / 6
C[28][15] = 0.307692 ; 4 / 13
c{12][4] = 0.300000 ; 3 / 10
C[(12][5] = 0.300000 ; 3 / 10
C(24}(15] = 0.300000 ; 3 / 10
cl[26])[12) = 0.300000 ; 3 / 10
C[(28][3] = 0.300000 ; 3 / 10
C(43] (3] = 0.300000 ; 3 / 10
C(45]{7] = 0.294118 ; 5 / 17
C[45)[26]) = 0.294118 ; 5 / 17
C{6)(3] = 0.285714 ; 2 / 7
Cc(24](5] = 0.285714 ; 2 / 7
Cc{26]1{5) = 0.285714 ; 2 / 7
Ci28][9) = 0.285714 ; 6 / 21
C[32){4] = 0.285714 ; 2 / 7
C[(32]1([5]) = 0.285714 ; 2 / 7




C[33]1(3] = 0.285714 ; 2 / 7
Cl{33}(26] = 0.285714 ; 2 / 7

C[34]1(3) = 0.285714 ; 2 / 7

C[34](26) = 0.285714 ; 2 / 7
Cc(351(1] = 0.285714 ; 2 / 7

CI35]113] = 0.285714 ; 2 / 7

c(35)(26] = 0.285714 ; 2 / 7
C{36]{1l] = 0.285714 ; 2 / 7

C{36](26] = 0.285714 ; 2 / 7
C[37)(3] = 0.285714 ; 2 / 7

Cl37]1(26] = 0.285714 ; 2 / 7
C(38]([7) = 0.285714 ; 4 / 14
c[{38]1(33] = 0.285714 ; 2 / 7
Cc(38]1(34] = 0.285714 ; 2 / 7
C({38]1(35] = 0.285714 ; 2 / 7
C(38](36] = 0.285714 ; 2 / 7
C[38]([37] = 0.285714 ; 2 / 7
Cl(39](33] = 0.285714 ; 2 / 7
C[39][34] = 0.285714 ; 2 / 7
C[39]1(35] = 0.285714 ; 2 / 7
C[39]1(36) = 0.285714 ; 2 / 7
C(39]1[37] = 0.285714 ; 2 / 17
Cl40]{33] = 0.285714 ; 2 / 7
Cl40){34) = 0.285714 ; 2 / 7
C[40)[35] = 0.285714 ; 2 / 7
C[40){36] = 0.285714 ; 2 / 7
C[40)(37] = 0.285714 ; 2 / 7
C{41)[33] = 0.285714 ; 2 / 7
C[41][34) = 0.285714 ; 2 / 7
C[41](35) = 0.285714 ; 2 / 7
Cl41)(36) = 0.285714 ; 2 / 7
Cl41)(37) = 0.285714 ; 2 / 17
Cc[42)[33) = 0.285714 ; 2 / 1
C[42])[34) = 0.285714 ; 2 / 1
Cl42)135]) = 0.285714 ; 2 / 1
cl42)1[36) = 0.285714 ; 2 / 7
Cl42]137) = 0.285714 ; 2 / 7

Cl43)1(6] = 0.285714 ; 2 / 7
Cl[45]1(15] = 0.285714 ;
C{15]1[71 = 0.277778 ; 5 / 18
Ccl45)1(3] = 0.277778 ; 5 / 18
C{71[3) = 0.266667 ; 4 / 15
C[7)[4] = 0.266667 ; 4 / 15
Cl(26][7] = 0.266667 ; 4 / 15
C(231(4] = 0.250000 ; 3 / 12
cl{25115] = 0.250000 ; 2 / 8
C(28](23]) = 0.250000 ;
C{28]{24] = 0.250000 ;
Cl{321(28] = 0.250000 ;
C(331(4] = 0.250000 ; 2
C(33]1({5] = 0.250000 ; 2

3/1
2/ 8
2/ 8

/ 8
/ 8

6 / 21

C(33}(10] = 0.250000 ; 1 /7 4
C(331{32] = 0.250000 ; 1 s 4
C(34}[4] = 0.250000 ; 2 / 8
C(341(5] = 0.250000 ; 2 / 8
C[34}(10] = 0.250000 ; 1 / 4
C(34}(32) = 0.250000 ; 1 / 4
C[35][4] = €.250000 ; 2 / 8
C{35])(5] = 0.250000 ; 2 7/ 8
C[(35)][10) = 0.250000 ; 1 / 4
C[35)(32) = 0.250000 ; 1 / 4
C[36][4] = 0.250000 ; 2 / 8
C[36][5) = 0.250000 ; 2 / 8
C[{36)[10)] = 0.250000 ; 1 / 4
C[36)[32] = 0.250000 ; 1 / 4
C{371[4] = 0.250000 ; 2 / 8
C[371[5] = 0.250000 ; 2 / 8
C[3711[10] = 0.250000 ; 1 / 4
C(371(032] = 0.250000 ; 1 / 4
C[38)}[1] = 0.250000 ; 2 / 8
C[43](25]) = 0.250000 ; 2 / 8
C[43]1([32) = 0.250000 ; 2 / 8
C{91[5] = 0.238095 ; 5 / 21
cl{26][9] = 0.238095 ; 5 / 21
Cl41(1] = 0.222222 ; 2 / 9
C[51(1] = 0.222222 ; 2/ 9
cf{12])[1) = 0.222222 ; 2 / 9
Cl[241[12) = 0.222222 ; 2 / 9
Cl[26)({1] = 0.222222 ; 2 / 9
c{28][1] = 0.222222 ; 2 / 9
Cl33)(28] = 0.222222 ; 2/ 9
C[34]1(28) = 0.222222 ; 2 / 9
C(35](28) = 0.222222 ; 2 / 9
Cl[36](28) = 0.222222 ; 2 / 9
Ccl37)1[28) = 0.222222 ; 2 / 9
C[39)[3] = 0.222222 ; 2 / 9
c[40) 3] = 0.222222 ; 2 / 9
Cl41)(3) = 0.222222 ; 2 / 9
Ccl42]1[3) = 0.222222 ; 2 / 9
Cl43)[24) = 0.222222 ; 2 / 9
Cc(43][33) = 0.222222 ; 2 / 9
Cl43]1(34) = 0.222222 ; 2 / 9
C[43)[35) = 0.222222 ; 2 / 9
Ci[43)[36) = 0.222222 ; 2 / 9
C143)[37) = 0.222222 ; 2/ 9
Cl[45][5]) = 0.222222 ; 4 / 18
Cl15)[12) = 0.214286 ; 3 / 14
Ccl18)[3] = 0.214286 ; 3 / 14
Ci{24)[7) = 0.214286 ; 3 / 14

Cl[43)[15) = 0.214286 ; 3 / 14
Cl45](4] = 0.210526 ; 4 / 19
C[45][28) = 0.210526 ; 4 / 13




C[10](1} = 0.200000 ; 1 / 5
C[17])([(15) = 0.200000 ; 2 / 10

C[21]1(15] = 0.200000 ; 2 / 10
ci{22]{6] = 0.200000 ; 1/ 5
C{28] (4] = 0.200000 ; 2 / 10

C(28]{11] = 0.200000 ; 2 / 10
ci{28]{16] = 0.200000 ; 2 / 10
C{32]{6] = 0.200000 ; 1/ 5

Cl(32][15] 0.200000 ; 2 / 10
C{341(33] = 0.200000 ; 1 / 5
C[35]1(33] = 0.200000 ; L / 5
C(35](34] = 0.200000 ; 1 / 5

c{36](33] 0.200000 ; 1/ 5
C[36][34] = 0.200000 ; 1 / 5
C[36](35] = 0.200000 ; 1 / 5
C[37)1(33] = 0.200000 ; 1 / 5
C[37]1(34) = 0.200000 ; 1 / 5
C(37]1{35] = 0.200000 ; 1/ 5
C[37][36] = 0.200000 ; 1 / 5

C{391[7] = 0.200000 ; 3 / 15
C[391({12] = 0.200000 ; 2 / 10
C[40]([7] = 0.200000 ; 3 / 15
C(40](12] = 0.200000 ; 2 7/ 10
C(411([7] = 0.200000 ; 3 / 15
Cl41)(12} = 0.200000 ; 2 / 10
Cl42][7] = 0.200000 ; 3 / 15
C(42](12] = 0.200000 ; 2 7/ 10
C[45](43] = 0.200000 ; 4 /7 20
C[91(7] = 0.190476 ; 4 / 21
C{71(5] = 0.187500 ; 3 / 16
Cc(28](7} = 0.187500 ; 3 / 16
C[9])[3]) = 0.181818 ; 4 / 22
C[(12) (3] = 0.181818 ; 2 / 11
C(15]({3] = 0.181818 ; 2 / 11
c{15][(6] = 0.181818 ; 2 / 11
c{18]1({6] = 0.181818 ; 2 / 11

C[25][15]) = 0.181818 ; 2 / 11
C{33](15] = 0.181818 ; 2 / 11
C[34)(15] = 0.181818 ; 2 / 11
C(35](15] = 0.181818 ; 2 / 11
C[36](15] = 0.181818 ; 2 / 11
C[37]({15] = ¢0.181818 ; 2 / 11
c[38]([23) = 0.181818 ; 2 / 11
Cl43][26]) = 0.181818 ; 2 / 11
C[45] (23] = 0.181818 ; 4 / 22

C[(451(6]1 = 0.176471 ; 3 / 17
C(45](18] = 0.176471 ; 3 / 17
C(45]11(24] = 0.176471 ; 3 / 17
Cl45](32) = 0.176471 ; 3 / 17
C{10][3) = 0.166667 ; 1 / 6
C[10])(4) = 0.166667 ; 1 / 6

108

Cl11][10] = 0.166667 ; 1 / 6
C[16]1[10} = 0.166667 ; 1 / 6
Cl1710[1] = 0.166667 ; 1 / 6
Cl21](1]) = 0.16666%7 ; 1 / 6
C[23]1(5] = 0.166667 ; 2 / 12
Cl23]([7] = 0.166667 ; 3 / 18
C[23}[12) = 0.166667 ; 2 / 12
Cl24)16] = 0.166667 ; 1 / 6
C[25](18] = 0.166667 ; 2 / 12
C[25](22) = 0.166667 ; 1 / &
C[26] (23] = 0.166667 ; 2 s 12
C(28]([13] = 0.166667 ; 2 / 12
C[32)[18] = 0.166667 ; 2 / 12
C(32][22) = 0.166667 ; 1 / 6
C[32]([25] = 0.166667 ; 1 / 6
C[33](6] = 0.166667 ; 1 / 6
C{34](6] = 0.166667 ; 1 / 6
C{35)[6] = 0.166667 ; 1 / 6
C[36][2) = 0.166667 ; 1 / 6
C[36][6] = 0.166667 ; 1 / 6
Cl37][6] = 0.166667 ; 1 / 6
C[38){24] = 0.166667 ; 1 / 6
C[40](39] = 0.166667 ; 1 / 6
C[41]([39] = 0.166667 ; 1 / 6
C[41)[40) = 0.166667 ; 1 / 6
C[42)[39] = 0.166667 ; 1 / 6
C[42][40] = 0.166667 ; 1 / 6
Cl42)(41] = 0.166667 ; 1 / 6
Cl43](13] = 0.166667 ; 2 / 12
C[45]1 (221 = 0.166667 ; 3 / 18
C[45]([25]) = 0.166667 ; 3 / 18
C(45]1(33] = 0.166667 ; 3 / 18
C[45])[34) = 0.166667 ; 3 / 18
C[45](35) = 0.166667 ; 3 / 18
C[45](36] = 0.166667 ; 3 / 18
C[4511[37] = 0.166667 ; 3 / 18
C[15)([9] = 0.160000 ; 4 / 25
C[45](1] = 0.157895 ; 3 / 19
C{17]1(7] = 0.153846 ; 2 / 13
C[211(7] = 0.153846 ; 2 / 13
C(33][18] = 0.153846 ; 2 / 13
C[34]1[18] = 0.153846 ; 2 / 13
C[35][18) = 0.153846 ; 2 / 13
C[36](18] = 0.153846 ; 2 / 13
C{37]1(18] = 0.153846 ; 2 / 13

C[44]1[7] = 0.153846 ; 2 / 13

C(91(6] = 0.1

50000 ;

3720

C[45]1(12] = 0.150000 ; 3 / 20
C[12]([10]) = 0.142857 ; 1 / 7

C[17](5] = 0.

142857

; 1L /7

C[17](11) = 0.142857 ; 1 / 7




Cl17)(16] = 0.142857 ; 1 / 7

Cc[181{7) = 0.142857 ; 2 / 14
Cl21](S] = 0.142857 ; 1 / 7
Cf{21)[11] = 0.142857 ; 1 7 7
Cf21) (18] = 0.142857 ; 1 / 7
Cl24}{1] = 0.142857 ; 1 / 7
Cl24](9] = 0.142857 ; 3 / 21
Cf{24)([22] = 0.142857 ; 1 / 7
C[25]1(9] = 0.142857 ; 3 / 21
C[25][24) = 0.142857 ; 1 / 7
C(28][10] = 0.142857 ; 1 / 7
C{321(1] = 0.142857 ; 1 / 7
C(32](7] = 0.142857 ; 2 / 14
C[33]122] = 0.142857 ; 1 / 7
C[33]11[25] 0.142857 ; 1 / 7
C(34]1(22] = 0.142857 ; 1 / 1
C(34]1(25] = 0.142857 ; 1 r 7
C[35)(22] = 0.142857 ; 1 / 7
C[35](25] = 0.142857 ; 1 / 7
C[36]({22}) = 0.142857 ; 1 / 7
C{36][25] 0.142857 ; 1 / 7
C(37]1(22] = 0.142857 ; 1 /1
C[37][25) = 0.142857 ; 1 / 7
c(38][2] = 0.142857 ; 1 / 7
C{38](26] = 0.142857 ; 1 / 7
C[39][24] 0.142857 ; 1 / 7
C[40] [24] 0.142857 ; 1/ 7
C[41](24]) = 0.142857 ; 1 / 7
C[42])(24] = 0.142857 ; 1 / 17
C{43]1(18]) = 0.142857 ; 2 / 14
Cl44](3) = 0.142857 ; 2 / 14
C[9](1] = 0.136364 ; 3 / 22
C(38]1 (9] = 0.136364 ; 3 / 22
C[7)(1] = 0.133333 ; 2 / 15
c{26](18}] = 0.133333 ; 2 / 15
Cl33]11(7] 0.133333 ; 2 / 15
C[34](7] = 0.133333 ; 2 / 15
C[(35](7] = 0.133333 ; 2 / 15
C[36][7] = 0.133333 ; 2 / 15
C{37](7) = 0.133333 ; 2 / 15
C(91[4] = 0.130435 ; 3 / 23
C(31{1) = 0.125000 ; 1 / 8
C(41(2]) = 0.125000 ; 1 / 8
C[5][2) = 0.125000 ; 1 / 8
c(6]{5) = 0.125000 ; 1 / 8
C(12](2] = 0.125000 ; 1 / 8
C{12]{7] = 0.125000 ; 2 / 16
C(17]1(12] = 0.125000 ; 1 / 8
cf21]1([12) = 0.125000 ; 1 / 8
C{23]1{15] = 0.125000 ; 2 / 16
Cf{26](2] = 0.125000 ; 1 / 8
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Cl[37])
C[381[5]
C[39](26]
Ccl40] (28]
Cl41][26]
crazjize)
Cl43]{17]

O O o O

)

]

cr43j(21] =

cr23} (9]
Cl43][7]
C(45]11{17]
cl45][21]
C[45] [44]
Cl11)11)
clisl(a]
Cl13] (6]
Cl1e6](1]
clris][15]
ci22]1(3]
cl2z1(s]
ci24])[11]

i

#

]

i

[}

.125000 ;
.125000 ;
.1250600 ;
.125000 ;
.125000 ;
.125000 ;
.125000 ;

= (0.125000 ;
= 0.125000 ;

0.125000 ;

= 0.125000 ;

0.125000 ;
0.125000 ;
0.125000 ;
0.125000 ;
0.125000 ;
0..25000 ;
0.120000 ;
0.117647 ;
0.117647 ;
0.117647 ;

= 0.117647 ;

Cl24](16] =

Cl26] {22]
Cl26][25]
c(28](22]
c{28][25]
Ccl28][26]
c[32j112]
C[331(11]
C[33](16]

[}

C[34](11] =

Cl3411(16]
C[35]{11]

C{35] (16} =

Cl36][11]
C[36][16]
C(371(11]
Cl3711(16]
C(38] (28]
cl39] (1]
Cl40] (1]
C(41] (1]

0

0.111111 ;
0.111111 ;
0.111111 ;
0.111111 ;
0.111111 ;

= 0.111111 ;
= 0.111111 ;

.111111
.111111
.111111
.111111
.111111
.111111
.111111
.111111
111111
.111111
111111
111111
.111111
L111111
.111111
.111111
1111112
.111111
111111 ;
0.111111 ;
0.111111 ;
0.111111 ;
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C[42} (1] = 0.111111 ; 1/ 9
cl43)(22) = 0.111111 ; 1/ 9
C(441(15) = 0.111111 ; 2 / 18
C{45])[2] = 0.111111 ; 2 / 18
C[45](38] = 0.111111 ; 2 / 18
C{45](39] = 0.105263 ; 2 / 19
C(45]1{4C] = 0.105263 ; 2 / 19
C[45]1[41] = 0.105263 ; 2 / 19
C{45]1[42] = 0.105263 ; 2 / 19
C(15](10] = 0.100000 ; 1 / 10
€(22]1{13] = 0.100000 ; 1 /7 10
C(231{17) = 0.100000 ; 1 / 10
C[(23](21] = 0.100000 ; 1 / 10
C{25](13] = 0.100000 ; 1 / 10
C[33][12] = 0.100000 ; 1 / 10
C[34])[12] = 0.100000 ; 1 / 10
C[35]([12] = 0.100000 ; 1 / 10
c{36](12] = 0.100000 ; 1 / 10
C(371(12] = 0.100000 ; 1 / 10
C{38](11] = 0.100000 ; 1 / 10
c(38](16] = 0.100000 ; 1 / 10
C[39] (11} = 0.100000 ; 1 / 10
C[39](16] = 0.100000 ; 1 / 10
C(39][28) = 0.100000 ; 1 / 10
C[40][11] = 0.100000 ; 1 / 10
C[(40][{16] = 0.100000 ; 1 / 10
C{40](28) = 0.100000 ; 1 / 10
C{41](11] = 0.100000 ; 1 / 10
C(41]1(16] = 0.100000 ; 1 / 10
C[41]) (28} = 0.100000 ; 1 / 10
C[42][11] = 0.100000 ; 1 / 10
C[42](16] = 0.100000 ; 1 / 10
C(42](28] = 0.100000 ; 1 / 10
C[9](2) = 0.095238 ; 2 / 21

C(22](9] = 0.095238 ; 2 /7 21
C(32](9]} = 0.095238 ; 2 / 21

C[45][11) = 0.095238 ; 2 / 21
C[45][16]) = 0.095238 ; 2 / 21
C{11} (3} = 0.090909 ; 1 / 11
C{11]{4} = 0.090909 ; 1 / 11
C[11](5] = 0.090909 ; 1 / 11
C(13]([1] = 0.090909 ; 1 / 11
C{16](3] = 0.080909 ; 1 / 11
Cl16](4] = 0.090909 ; 1 / 11
Cl[16][5} = 0.090909 ; 1 / 11
Cl23] (1} = 0.090909 ; 1 / 11
C[(26](11] = 0.090909 ; 1 / 11
C(26]([16] = 0.090909 ; 1 / 11
C{32]1{23] = 0.090909 ; 1 / 11

C({331(9) = 0.090909 : 2 / 22
C(34]1(9] = 0.090909 ; 2 / 22
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C{35][9] = 0.090909 ; 2 / 22
C[(361[9] = 0.090909 ; 2 / 2
C{371(9] = 0.090909 , 2 / 22
C{43](38] = 0.090%09 ; 1 / 11
C(44! (6] = C.0909C9% ; 1 /7 11
C{44]1({17] = 0.090909 ; 1 s 11
Cl44][21} = 0.090%09 ; 1 / 11
Cf12)[9) = 0.086957 ; 2 7 23
C[39)(9] = 0.086957 ; 2 7/ 23
C[40] (9] = 0.086957 ; 2 / 23
C(41][9] = 0.086957 ; 2 / 23
Cl42](9] = 0.086957 ; 2 / 23
C({11](%] = 0.083333 ; 2 / 24
C[13)[9] = 0.083333 ; 2 / 24
Cl13}1[11) 0.083333 ; 1 /7 12
C[16][9] = 0.083333 ; 2 / 24
C{16](13] = 0.083333 ; 1 / 12
C(18][17] = 0.083333 ; 1 / 12
C[21]{18] = 0.083333 ; 1 / 12
C(33}{23] = 0.083333 ; 1 / 12
C{34](23] = 0.083333 ; 1 / 12
C[35]([23] = 0.083333 ; 1/ 12
C[36)({23] = 0.083333 ; 1 / 12
C[371(23] = 0.083333 ; 1/ 12
C(391{23] = 0.083333 ; 1/ 12
C[40] (23] = 0.083333 ; 1 / 12
C[41]{23] = 0.083333 ; 1 / 12
C[42][23] = 0.083333 ; 1 / 12
C(43])[5]) = 0.083333 ; 1 / 12
Cl[43][9) = 0.083333 ; 2 / 24
C{43) (28] 0.083333 ; 1/ 12
C[44]1(25] = 0.083333 ; 1 / 12
C[44]1(32] = 0.083333 ; 1 / 12
C[{10](7} = 0.076923 ; 1 / 13
c(13i(12] 0.076923 ; 1 / 13
C{151([11 = 0.076923 ; 1 / 13
C[23)([3] = 0.076923 ; 1 / 13
Cf{23)[11] = 0.076923 ; 1 / 13
Cl[23]{16] = 0.076923 ; 1 / 13
Cl24](18] = 0.076923 ; 1 / 13
Cl[44]1(33] = 0.076923 ; 1 / 13
C(441(34] = 0.076923 ; 1 / 13
C[441(35] = 0.076923 ; 1 / 13
C[441([36] = 0.076923 ; 1 / 13
C{44}([37] = 0.076923 ; 1 / 13
C(7]1(2] = 0.071429 ; 1 / 14
C(71(6] = 0.071429 ; 1 / 14
C[44](39] = 0.071429 ; 1 / 14
C[44](40] = 0.071429 ; 1 / 14
C(44]1(41] = 0.071429 ; 1 / 14
C(44]1[42) = 0.071429 ; 1 / 14




Cl4411(43]
C(231([13] = 0.066667

cl2s)17]
c{39i(1
Cl40]¢
Ci41](1

cf421(
Cl44] (4

18

18

8]
]
8]

B

C[44][26]

c[18] (4]
c{18] (5]

c(28] (18]
C[{44]113]

Cl1111(7]
cl1e6l(7]

c(18](13]
cf45][10]

Cl13]1(7}
cli0}[9]

cl17]1(9] =

c[i8](9]
cr211(9]
C(441(9]

C(45][13]
JLL OTHER

Node[1]
Node (2]
Node (3]
Node (4]
Node (5]
Node [6]
Node [7]
Node [8]
Node [9]
Node[10]
Node(11]
Node (12]
Node [13]
Node (14]
Node [15]
Node{16]
Node [17]
Node (18]
Node[19]
Node [20]
Node [21]
Node [22]
Node (23]
Node [24]
Node (25]

= 24

=

= 0.071429 ; 1 / 14
; 1/ 15
0.066667 ; 1 / 15
= 0.066667 ; 1 / 1t
= 0.C66667 ; 1 / 1%
= 0.066667 ; 1 / 15
= 0.04%6667 ; 1 / 1%
J.066667 ; 1 / 15
= 0.066667 ; 1 / 15
= 0.062500 ; 1 / 16
0.062500 ; 1 / 16
= 0.062500 ; 1 / 16
= 0.062500 ; 1 / 16
= 0.058824 ; 1 / 17
0.058824 ; 1 / 17
= 0.058824 ; 1 / 17
= 0.058824 ; 1 / 17
0.052632 ; 1 / 19
0.050000 ; 1 / 20
0.047619 ; 1 / 21
0.047619 ; 1 / 21
0.047619 ; 1 / 21
0.047619 ; 1 / 21
= 0.043478 ; 1 / 23
EDGES = 0.000000
21 , C[1] = 1.000000
17 , C{2] = 1.000000
32, C[31 = 0.750000
, Cl[4] = 0.750000
16 , C[5) = 0.666667
11 , C[6] = 0.666667
38, C[(7] = 0.666667
4 , C[B}] = 0.666667
33, C[9] = 0.600000
34, C[10] = 0.600000
=35, C(11] = 0.600000
= 36, C[12] = 0.600000
37, CI[13] = 0.600000
15, C[14] = 0.500000
10, C[15} = 0.500000
3, C[16} = 0.500000
25 , C[(17) = 0.500000
6 , C[18] = 0.500000
5, CI[19]) = 0.454545
28 , C[20] = 0.444444
12 , C[21] = 0.444444
39, Cf{22] = 0.428571
40 , C[23] = 0.428571
41 , C(24) = 0.428571
42 , C(25] = 0.428571

11

Node (26]
Node (27!
Node [28]
Node [29]
Node (30!
Node [31]
Node [32]
Node {33
Node [34]
Node (35]
Node[36]
Node (37]

= 45,
=9,

26 ,

= 43 ,
=7,

=1,

23,

;=18

22,
13,

=2,

44 ,

clz6]
cr27]
c(28)
ci{29]
Cc(30]
C[31]

2]
C[33]
C{34]
Cl35]
C{36]
C(37]

[aNeNeNoNoNoNelolNo NI NG]

385952

.3803952
.375000
.30000¢C
.2941.8
.285714
.25000¢0
.214286
.2000C0
.16656"
.166667
.15384¢6




VERSION 3 J(371(34] = 0.600000 ; 3 / 5
COMPOSITE J{37](35] = 0.600000 ; 2 / S
J(371(36] = 0.600000 ; 3 / 5
31451 (44] = 0.588235 ; 10 / 1
3016111} = 1.000000 ; 6 / 6 J9IT] = 0.571429 ;12 v 2l
J{211(17] = 1.000000 ; 2 / 2 Ji381(26] = 0.571429 ; 4 4 ©
J(441(18] = 0.909091 ; 10 / 11 JI391141 = 0.571429 ; 4 / 7
J1381[4] = 0.833333 ; 5 / 6 JI401[4] = 0.571425 5 4 / ©
J(441(7] = 0.769231 ; 10 / 13 JILIIA) = 0.571429 5 4 /7
J(451(7] = 0.764706 ; 13 / 17 Jr4z1(al = 0.571425 ; 4 / °
10451 (9) - 0. 761908 . 18 1 2 J[28)[12] = 0.555556 ; 5 / 9
1221 (6] = 0.750000 . 3 /4 J(171(10] = 0.500000 ; 1 / 2
T032) (24] = 6.750000 5 3 /4 J[211(10] = 0.500000 ; 1 / 2
0331 (32] = 0.750000 . 3 7 4 J(24](17] = 0.500000 ; 2 / 4
0321 1321 = 0.790000 . 3 1 4 J124]1(21] = 0.500000 ; 2 / 4
3(35](32] = 0.750000 ; 3 / 4 J(26]1(3] = 0.500000 ; 4 / 8
1381 132] = 0 750000 . 3 4 J[261 (4] = 0.500000 ; 4 / 8
J(37)132] = 0.750000 ; 3 / 4 J321{3] = 0.500000 ; 3 / 6
1181 171 = 0.912286 & 10 ) 14 J(321(26] = 0.500000 ; 3 / 6
T1261 (5] - 0 714286 . 5/ J1331[17] = 0.500000 ; 2 / 4
J(241(3] = 0.666667 ; 4 / 6 J331[21] = 0.500000 ; 2 / 4
J[261(24] = 0.666667 ; 4 / 6 JI341117] = 0.500000 ; 2 / 4
10321 (17] = o ceceer i 2 J(34](21] = 0.500000 ; 2 / 4
T0321(21) - o 6ceeer . 2 v 3 J35]117] = 0.500000 ; 2 / 4
1361 (3] = 0.c66667 4 /¢ J[35] [21] = 0.500000 ; 2 / 4
J(391(38] = 0.666667 ; 4 / 6 JI36]1(17] = 0.500000 ; 2 / 4
T190)[38) - 0.6ecect . 4 ¢ J(361121] = 0.500000 ; 2 / 4
70401 139) - 0. 6ccect . 4 ) ¢ J(371(17] = 0.500000 ; 2 / 4
J[41)(38] = 0.666667 ; 4 / 6 J(371[21] = 0.500000 ; 2 / 4
10411 039] - o 6eeceT | 4 1 ¢ 31381 [15] = 0.500000 ; 5 / 10
T141]140] - 0. eceeer . & 1 & J(38][24] = 0.500000 ; 3 / 6
11421 (38) - o ceccer . 4 1 J1181(9] = 0.476190 ; 10 / 21
14211391 = o ceecer . 4 ) ¢ J(15](3] = 0.454545 ; 5 / 11
Tl42) 140) - o eceedr . 4 ) ¢ JI151[5] = 0.454545 ; 5 / 11
T042](41] - 0. egeeer | 4 v o J(26][15] = 0.454545 ; 5 / 11
J(45] (18] = 0.647059 ; 11 / 17 JI121111] = 0.444444 ; 4 / 9
J(21(1] = 0.600000 ; 3 / 5 JI161112] = 0.44ddd4 ; 4 / 9
J(151(4] = 0.600000 ; 6 / 10 J(281(5] = 0.444444 ; 4 / 9
033) (24] = 0600000 ; 3 / 3 J[28)[26] = 0.444444 ; 4 / 9
J(34](24] = 0.600000 ; 3 / 5 J(24)[4) = 0.428571 ; 3 / 7
J[34][33] = 0.600000 ; 3 / 5 J[241(5] = 0.428571 ; 3 / 7
J135)(24] = 0.600000 ; 3 / 5 J(331[3] = 0.428571 ; 3 / 7
10351 (33) = 0600000 . 3 ) - J[33]1(26] = 0.428571 ; 3 / 7
J[35]1(34] = 0.600000 ; 3 / 5 JI34113) = 0.428571 ; 3 / 7
J[36][24] = 0.600000 ; 3 / 5 JI341(26] = 0.428571 ; 3 / 7
J[36](33] = 0.600000 ; 3 / 5 J(351(3] = 0.428571 ; 3 / 7
70361 134) - 0. €00000 . 3 1 * J(35](26] = 0.428571 ; 3 / 7
71361 135] - 0600000 . 3 1 3 J[36)[26) = 0.428571 ; 3 / 7
3(37](24] = 0.600000 ; 3 / 5 JIST1[3) = 0.428571 ; 3 / 7
J1371133] = 0.600000 ; 3 / S JI371(26) = 0.428571 ; 3 / 7

J(43}1(6] = 0.428571 ; 3 / 7
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44] (9] = 0.428571 ;
J([22](6] = 0.400000 ;
J(24]1(15] = 0.400000

Ji381([17]) = 0.400000

J(38][21) = 0.400000
Ji{3 9l< 71 0.400000

J[39i(21] 0.400000
J[40]{l ] = 0.400000
J[40](21] = 0.400000
J{41]1(17] = 0.400000
J[41](21}) = 0.400000

J{421[17] = 0.400000
J42) (211 = 0.400000
J[3][1] = 0.375000 ;

J(28][24] = 0.375000
J(38](3] = 0.375000 ;
J(38]1(5] = 0.375000 ;
J[39][26] = 0.375000
J(40j(26] = 0.375000
J(41]{26] = 0.375000
J(42](26] = 0.375000
J[43](25] = 0.375000
J[39]1[15]1 = 0.363636
J(40][15] = 0.363636
J[41])[15]) = 0.363636
J[421(15] = 0.363636
J(45]1 (261 = 0.352941
J[41(3] = 0.333333 ;
J{5)[3] = 0.333333 ;
J(5}[4] = 0.333333 ;
J[12](1] = 0.333333 ;
J{171(3) = 0.333333 ;
J{171(4] = 0.333333 ;
J[21)(3] = 0.333333 ;

J[(21] (4] = 0.333333 ;
J[231[12) = 0.333333
J(25}(22] = 0.333333
J(26]({17) = 0.333333
J(26] (21} = 0.333333
5{28][1) = 0.333333 ;

J(28}1(23) = 0.333333
J{32]([10] = 0.333333
J[38][12) = 0.333333
J(38] (28] = 0.333333
J[381([32] = 0.333333
J{39]1(32] = 0.333333
J[40][32) = 0.333333
J[(41}(32] = 0.333333
J{42](32] = 0.333333
J(28](15] = 0.307692

J(12]) (4] = 0.300000 ;
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J{12]({5] = 0.300000 ; 3 / IO
J(26][{12] = 0.300000 ; 3 / G
J[28][3] = 0.300000 ; 3 / 10
J(281{4] = 0.300000 ; 3 / 10
J[287[(11) = 0.300000 ; 3 / 10
J(28]1[16] = C€.300000 ; 3 / 10
J{32][15) = 0.30000C ; 3 / 10
J[43] (3] = 0.300000 ; 3 + 1C
J(3)1(2] = 0.285714 ; 2 / 7
J{6](3] = 0.285714 ; 2 / 7
J(24)[1] = 0.285714 ; 2 /7 *
J[28]1(9]) = 0.285714 ; 6 / 21
J(32][4] = 0.285714 ; 2 / 7
J{32)[5} = 0.285714 ; 2 / 7
J{35][1] = 0.285714 ; 2 / 7
J[36]}(1) = 0.285714 ; 2 / 7
J{38]([7] = 0.285714 ; 4 / 14
J[38)[33] = 0.285714 ; 2 / 7
J[381[34] = 0.285714 ; 2 / 7
J(38](35) = 0.285714 ; 2 / 7
J(38](36] = 0.285714 ; 2 / 7
J(381(37] = 0.285714 ; 2 / 7
J(39])[24] = 0.285714 ; 2 / 7
J[39]1(33] = 0.285714 ; 2 / 7
J[39][34] = 0.285714 ; 2 / 7
J[39][35] = 0.285714 ; 2 / 7
J(39][36) = 0.285714 ; 2 / 7
J[39]1[37] = 0.285714 ; 2 / 7
J{40](24] = 0.285714 ; 2 / 7
J[40}{33) = 0.285714 ; 2 / 7
J[40][34] = 0.285714 ; 2 / 7
J{40}[35) = 0.285714 ; 2 / 7
J{40]1(36] = 0.285714 ; 2 / 7
J[401(37] = 0.285714 ; 2 / 7
J{41](24] = 0.285714 ; 2 / 7
J[41}133) = 0.285714 ; 2 / 7
J[41]1([34) = 0.285714 ; 2 / 7
J(41](35) = 0.285714 ; 2 / 7
J{41]([36]) = 0.285714 ; 2 / 7
J{411(37) = 0.285714 ; 2 / 7
J(42](24) = 0.285714 ; 2 / 7
J(42]1(33] = 0.285714 ; 2 / 7
J[42)(34) = 0.285714 ; 2 / 7
J{421(35] = 0.285714 ; 2 / 7
J(421[36} = 0.285714 ; 2 / 7
J[421(37) = 0.285714 ; 2 / 7
J[43]1([(18] = 0.285714 ; 4 / 14
J[45)[15]) = 0.285714 ; 6 / 21
J{15]1(7) = 0.277778 ; 5 / 18

J[45)(3] = 0.277778 ; 5 / 18
J{45)(5) = 0.277778 ; 5 / 18




J(18]1(6]

0.272727 ; 3 / 11

J(23](4] = 0.272727 ; 3 / 11

J[251([15) = 0.272727 ; 3 / 11
JI337(15] = 0.272727 ; 3 / 11
J{34]{15]) = 0.272727 ; 3 / 11
J[351(15] = 0.272727 ; 3 / 11
J[36]1125] = 0.272727 ; 3 / 11
JI{37)[15] = 0.272727 ; 3 / 11
J(381 (23] = 0.272727 ; 3 / 11
J{71(3] = 0.266667 ; 4 / 15

J[{7][4] = 0.266667 ; 4 / 15

J(26][7] = 0.266667 ; 4 / 15
J(45] (4] = 0.263158 ; 5 / 19
J(45] (28] = 0.263158 ; 5 / 19

J(i21(2) = 0.250000 ; 2 / 8

J(12]17] = 0.250000 ; 4 / 16
J{23] (4] = 0.250000 ; 3 / 12
J[231[5] = 0.250000 ; 3 / 12

J(24][10] = 0.250000 ; 1 / 4
J{25][3] = 0.250000 ; 2 / 8
J{25)(5) = 0.250000 ; 2 / 8
J[25][18) = 0.250000 ; 3 / 12
J[(26]([23] = 0.250000 ; 3 / 12
J(28](2] = 0.250000 ; 2 7 8
J{28] (6] = 0.250000 ; 2 / 8
J[28] (7] = 0.250000 ; 4 / 16
J(32](28] = 0.250000 ; 2 / 8
J(33](4] = 0.2500.0 ; 2 / 8
J[331([5] = 0.250000 ; 2 / 8
J(33] (10} = 0.250000 ; 1 / 4
J(34]1(4) = 0.250000 ; 2 /
J(34]1 (5] = 0.250000 ; 2 /
J[34]([10] = 0.250000 ; 1 / 4
J{35](4) = 0.250000 ;: 2 / 8
J[35] (5] = 0.250000 ; 2 / 8
J{35)[10]) = 0.250000 ; 1 / 4
J(36] (4] = 0.250000 ; 2 / 8
J{36] (5] = 0.250000 ; 2 / 8
J(36]1[10] = 0.250000 ; 1 / 4
J{37][4) = 0.250000 ; 2 / 8
J(371{5] = 0.250000 ; 2 / 8
J{37]1(10] = 0.250000 ; 1 / 4
J(38]) (1] = 0.250000 ; 2 / 8
J[43][32] = 0.250000 ; 2 / 8
J{9] (5] = 0.238095 ; 5 / 21
J(26]1(9] = 0.238095 ; 5 / 21
J[45])[24]) = 0.235294 ; 4 / 17
J(4]}[1] = 0.222222 ; 2 / 9
J{S]([1] = 0.222222 ; 2 / 9
JI11)[1]) = 0.222222 ; 2 / 9
J(16] (1] = 0.222222 ; 2 / 9

® ©®
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J[23117] = 0.222222 ; 4 / 18
J{24](12] = 0.222222 ; 2 / S
J(26][1] = Q0.222222 ; 2 / 9
J{281[22] = 0.222222 ; 2 / %
J[e8)1{25] = 0.222222 ; 2 , S
J(33]1(28] 0.222222 ; 2 / 9
c{34]1(28] = 0.222222 ; 2 / 3
J[35][28] = 0.222222 ; 2 / 9
J{36](28] = 0.222222 ; 2 / 9
J{37]1(28]) = 0.222222 ; 2 / 9
J[39) (3] = 0.222222 ; 2 / 9
J(39] (5] = 0.222222 ; 2 / 9
J(40] (3] = 0.222222 ; 2 / 9
J[40] (5] = 0.222222 ; 2 / 9
J(41]) (3] = 0.222222 ; 2 / 9
J[41]}[5]) = 0.222222 ; 2 / 9
J[42]{3]) = 0.222222 ; 2 / 9
J(42][5) = 0.222222 ; 2 / 3
J(43][22]) = 0.222222 ; 2 / 9
J(43]1(24] = 0.222222 ; 2 / 9
J(43]}(33] = 0.222222 ; 2 / 9
J[43)(34] = 0.222222 ; 2 / 9
J{43]1([35] = 0.222222 ; 2 / 9
J(43]{36] = 0.222222 ; 2 / 9
J[43)([37) = 0.222222 ; 2 / 9
J[45](38] = 0.222222 ; 4 / 18
J{15][12] = 0.214286 ; 3 / 14

J(18][3] = 0.214286 ; 3 / 14
J[24]([7] = 0.214286 ; 3 / 14
J[43][15] 0.214286 ; 3 / 14
J(44]{43] = 0.214286 ; 3 / 14
J[(6}[{2) = 0.200000 ; 1 / 5
J[7){1] = 0.200000 ; 3 / 15
J{10](1] = G.200000 ; 1 / 5
J[15)(9] = 0.200000 ; 5 / 25
J(17]{15) = 0.200000 ; 2 / 10
J[21]1115] = 0.200000 ; 2 / 10
T7(233(2] = 0.200000 ; 2 7 10
J[321(6] = 0.200000 ; 1 / 5
J(38][10] = 0.200000 ; 1 / 5
J(39]1{7} = 0.200000 ; 3 / 15

J(39](10] = 0.200000 ; 1 / 5
J(39]) (12} = 0.200000 ; 2 / 10
J[39]11[28] = 0.200000 ; 2 / 10

J[40] (7] = 0.200000 ; 3 / 15
J[40]{10] = 0.200000 ; 1 / 5
J[40}[12] = 0.200000 ; 2 / 10
J(40] (28] = 0.200000 ; 2 / 10
J[41]([7} = 0.200000 ; 3 / 15
J[41)[10) = 0.200000 ; 1 / S
J{41])(12) = 0.200000 ; 2 / 10
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J(4511(
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J[10][3]
J(10] (4]
J{10] (5]
J(11] (19]
J[16][10]
Jr17101)
J(181 (15}
J[21]11[1)
Jl22312}
J{2411[2]
J(24][6]
J{25] (2]
J(26]1110]
J[2811(13]
J(32}(18]
J(32](22]
J[(32][25]
J[33][6]
J(34]1(6)
J(3571[6]
J[36]12]
J[36]([6]
JI[37]1[6}
J(39] 23]
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J(23] (1]
J[23](16]
J[24] (18]
J{33](18]
J[34] (18]
J[35][18]
J[36][1b]
J{37]1118]
J[3]16]
J(e](1]
Ji7l (2]
J(7](6]
J[12){10]
J[1711(5]

J(17][11]
J{17](16]
J[21] (5]

J[21]{11]
J[21] (18]
J22] (9]

J[24][9]

J(24][22]
J(25]71(9]

Jl25] (24)
J(28] {10!
Ji32]) (1]

J(32]11(7]
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J{361(25] = 0.142857 ; 1 / 7 J[23}[10] = 0.111111 ; 1 / 3

J{37]1[22) = 0.142857 ; L / 7 J[24][11) = 0.111111 ; 1 / S
J{371([25] = 0.142857 ; 1 / 7 Jr24][16} = 0.111111 ; 1 / 9
J[38112] = 0.142857 ; 1 / 7© J{a25) (11} = 0.111111 ; 1 /7 9
Jl44) (3] = 0.142857 ; 2 / 14 Jiz2slfis] = 0.111111 ; 1 7/ 9
J{91[2] = 0.136364 ; 3 / 22 J{26] {22} = 0.111111 ; 1 + 3

JI{38]79] = 0.136364 ; 3 / 22 J{26}[25) = 0.1111:11 ; 1 - 9
J[25} (7} = 0.133333 ; 2 / 15 J(3z2]{12] = 0.111111 ; 1 3
J([26](18] = 0.133333 ; 2 / 15 J[33]{11) = 0.111111 ; 1 / 9
J[33](7] = 0.133333 ; 2 / 15 J[33][16] = 0.111111 ; 1 / °
J[(341[7) = 0.133333 ; 2 / 15 J[34)({11) = 0.111111 ; 1 / ¢
J(35][7] = 0.133333 ; 2 / 15 J[34][16]) = 0.111111 ; 1 / 9
J{36]1[7] = 0.133333 ; 2 / 15 J[35][11] = 0.111111 ; 1 / 9
J{37]1(7) = 0.133333 ; 2 / 15 J[35]{16] = 0.111111 ; 1 / 9
J[(9) (41 = 0.130435 ; 3 / 23 J[36}{11] = 0.111111 ; 1 / 9
J[4](2) = 0.125000 ; 1 / 8 J{36j{16] = 0.111111 ; 1 / 9
J[5]{2] = 0.125000 ; 1 / 8 J[37}[11) = 0.111111 ; 1 / 9
J[6]1[5] = 0.125000 ; 1 / 8 J[37}[16] = 0.111111 ; 1 / 8
J(11][2] = 0.125000 ; 1 / 8 J[39}(:1] = 0.111111 ; 1 / 9

J(11]([6] = 0.125000 ; 1 / 8 J[40][1] = 0.111111 ; 1 / S

J{13]1[9] 0.125000 ; 3 / 24 J[41][1) = 0.111111 ; 1 / 9

J[(16]{2] = 0.125000 ; 1 / 8 J[42])[1] = 0.111111 ; 1 / S

J{le][6] = 0.125000 ; 1 / 8 J[43)[2] = 0.111111 ; 1 / 9

J[17]1[12) = 0.125000 ; 1 / 8 J[44){15]) = 0.111111 ; 2 / 18
J[21]([12]) = 0.125000 ; 1 / 8 J[45][2] = 0.111111 ; 2 / 18
J[22][1] = 0.125000 ; 1 / 8 J[15)[10] = 0.100000 ; 1 / 10
J[25]{1) = 0.125000 ; 1 / 8 J[22])[12] = 0.100000 ; 1 /7 10
J(26][2} = 0.125000 ; 1 / 8 J[22][13] = 0.100000 ; 1 / 10
J{26]1({6] = 0.125000 ; 1 / 8 J{23]1([17) = 0.100000 ; 1 / 10
J(28]{17) = 0.125000 ; 1 / 8 J[23)[21] = 0.100000 ; 1 / 10
J(28][18] = 0.125000 ; 2 / 16 J[25}[12] = 0.100000 ; 1 / 10
J{28](21] = 0.125000 ; 1 / 8 J[25][13] = 0.100000 ; 1 / 10
J{32][11) = 0.125000 ; 1 / 8 J[33][12] = 0.100000 ; 1 / 10
J(32)([1s6]) 0.125000 ; 1 / 8 J[34])[12) = 0.100000 ; 1 / 10
J(33}1[1] = 0.125000 ; 1 / 8 J[35)[12] = 0.100000 ; 1 / 10
J[(34]{1] = 0.125000 ; 1 / 8 J{36][12] = 0.100000 ; 1 / 10
J{37](1} = 0.125000 ; 1 / 8 J[37)[12] = 0.100000 ; 1 / 10
J[(43}[9] = 0.125000 ; 3 / 24 J[38){11] = 0.100000 ; 1 / 10
J[43)(17] = 0.125000 ; 1 / 8 J[38)[16] = 0.100000 ; 1 / 10
J[43)[21) = 0.125000 ; 1 / 8 J[39)(11] = 0.100000 ; 1 / 10
J{11}[7] = 0.117647 ; 2 / 17 J[39][16] = 0.100000 ; 1 / 10
J(16}[7] = 0.117647 ; 2 / 17 J[40][11} = 0.100000 ; 1 / 10
J[45])[17) = 0.117647 ; 2 / 17 J[40)[16] = 0.100000 ; 1 / 10
J[45]1([21) = 0.117647 ; 2 / 17 J[41][11]) = 0.100000 ; 1 / 10
Jri2][é; = 0.111111 ; 1 / 9 J[41)[16] = 0.100000 ; 1 / 10
J(13}[2} = 0.111111 ; 1 / 9 J[42)[11] = 0.100000 ; 1 / 10
J[13] (6] 0.111111 ; 1 / 9 J[42}[16] = 0.100000 ; 1 / 10
J[22](3] = 0.111112 ; 1 / 8 J[9){2] = 0.095238 ; 2 / 21

J[(221(5) = 0.111111 ; 1 / 9 J[32][9] = 0.085238 ; 2 / 21

J[45}[11) = 0.095238 ; 2 / 21

J{22](11] = 0.111111 ; 1 /
/ J[45][16] = 0.095238 ; 2 / 21

J(22}[16] = 0.111111 ; 1
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J[11][3] = 0.090909 ;
J{11}(4] = 0.090909 ;
J(111[5] = 0.C90909 ;
JI131 (1] 0.090909 ;
J[16] (3] = 0.090909 ;
J{l6][4] = 0.090909 ;
JI161[5] = 0.090909 ;
J{23) (5] = 0.090909 ;
J(26]{11] = 0.090909 ;
J[26)[16] = 0.0390909 ;
J[32) (23] = 0.090909 ;
J(33]1(9] = 0.090909 ;
J{34](9] = 0.090909 ;
J[35]1(9] = 0.090909 ;
J(36] (9] = 0.090909 ;
J[37]{9]) = 0.0903%909 ;
J(431(1] = 0.090909 ;
J(43](38] = 0.090909 ;
J[43])(39] = 0.090909 ;
J(43](40] = 0.090909 ;
J(43](41] = 0.090909 ;
J(43][42]) = 0.090909 ;
J{44}(17] = 0.090909 ;
J(44]1(21] = 0.090909 ;
J[39] (9] = 0.086957 ;
J{40]([9] = 0.086957 ;
J(411(9] = 0.086957 ;
J[42]) (9] 0.086957 ;
J{111(9] = 0.083333 ;

J[(13](11) = 0.083333 ;
J[15](2]) = 0.083333 ;

J{16][9] = 0.083333 ;

J(16]1(13] = 0.083333 ;
J[18][17} = 0.083333 ;
J(21]([(18] = 0.083333 ;
J{23][22] = 0.083333 ;
J[25]([23} = 0.083333 ;
J[33][23] = 0.083333 ;
J(34} (23] = 0.083333 ;
J[35]}[23]) = 0.083333 ;
J[36]1[23] = 0.083333 ;
J(371{23] = 0.083333 ;

J[43][4] = 0.083333 ;
J[43] (5] = 0.083333 ;
J(43])(11] = 0.083333 ;
J{43}[16] = 0.083333 ;
J(44]) (2] = 0.083333 ;
J[44]([32] = 0.083333 ;
J[101(7] = 0.076923 ;
J[13][12] = 0.076923 ;
Jlisj(z] = 0.076923 ;

11
11
11
11
11
11
11
11
1/ 11
1/ 11
1 /711
22
22
22
22
22
11
11
11
11
11
11
11
11
23
23
23
23
24
17/ 12
1/ 12
2 / 24
1712
/ 12
/ 12
/ 12
/ 12
/ 12
/
/
/
/

e e e
~ N N N N N NN

NN NODN
NN N N NN

el el

NN N NN N NN

NN NN
NN N NN N

12
12
12
12
1/ 12
1/ 12
1/ 12
1/ 12
1/ 12
17/ 12
1/ 13
17/ 13
1/ 13

1
1
1
1
1
1
1
1
1
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J[22]1{15] = 0.076923 ; 1 / i2
J[43](12] = 0.076923 ; 1 . 12
J{44]1(22] = 0.076923 ; 1 , 13
J(44]([24]) = 0.0769323 ; 1 / 13
J(44]1(33] = 0.076923 ; 1 + 13
J{44][34] = 0.076923 ; 1 / 13
J(44] (35] 0.076923 ; 1 / 13
J{44]({36] = 0.076923 ; 1 / 13
J{44]1(37] = 0.076923 ; 1 7 13
J(44])(1) = 0.071429 ; 1 / 14

J[44])([38] = 0.071429 ; 1 / 14
J(44]1({39] = 0.071429 ; 1 / 1

J[44][40] = 0.071429 ; 1 / 14
J[44][41) = 0.07142% ; 1 / 14
J(44](42] = 0.071429 ; 1 / 14
J{15}(11] = 0.066667 ; 1 / 15
J[16][15] = 0.066667 ; 1 / 15
J(181[1] = 0.066667 ; 1 / 15

J{23][13] = 0.066667 ; 1 / 15
J(38][18] = 0.066667 ; 1 / 15
J{39](18] = 0.066667 ; 1 / 15
J[40][18] = 0.066667 ; 1 / 15
J(41][18] = 0.066667 ; 1 / 15
J[42](18] = 0.066667 ; 1 / 15
J[43]1([23] = 0.066667 ; 1 / 1

J(44] (4] = 0.066667 ; 1 / 15

J[44](11] = 0.066667 ; 1 / 15
J[44][16] = 0.066667 ; 1 / 15
J[44}(26] = 0.066667 ; 1 / 15
J[1i8](4] = 0.062500 ; 1 / 16

J[18][5] = 0.062500 ; 1 / 16

J[18]1[11] = 0.062500 ; 1 / 16
J[18] (16] = 0.062500 ; 1 / 16
J[22][7]) = 0.062500 ; 1 / 16

J[44][12] = 0.062500 ; 1 / 16
J(44](13] = 0.062500 ; 1 / 16
J[44] (28] = 0.062500 ; 1 / 16
J(181(12] = 0.058824 ; 1 / 17
J{18](13] = 0.058824 ; 1 / 17
J[45][10] = 0.058824 ; 1 / 17
J[44][23) = 0.055556 ; 1 / 18
J[13]1(7] = 0.052632 ; 1 / 19

J[23][18] = 0.052632 ; 1 / 19
J{10]1([9] = 0.050000 ; 1 / 20

J[171(9] = 0.047619 ; 1 / 21

J[21][9] = 0.047619 ; 1 / 21

J(45)(13] = 0.043478 ; 1 / 23

JLL OTHER EDGES = 0.000000




Node (1]

Node[2]

Node (3]

Node {4]

Node [5]

Node (6]

Node 7]

Node (8]

Node {9}

Node (10]
Node[1l1]
Node[12]
Node [13]
Node (14}
Node [15]
Node[16]
Node (17]
Node (18]
Node [19]
Node [20]
Node [21]
Node [22]
Node (23}
Node [24]
Node [25]
Node [26]
Node [27]
Node [28]
Node [29]
Node (301
Node (31]
Node [32])
Node [33]
Node [34)
Node [35]
Node [36]
Node {37}

= 11

1

16

21
17
44
18
38 ,
4,

(s

45 ,
9
25,
6,
32,
24

O L T R

~

= 33
= 34

]

36
37
26 ,
5,
3.
39,

’
4
r
35,
14
14

= 40 ,
= 41 ,

42 ,

=2’
=1'

=10

15 ’
28 ’
12 ,

43
22
23
13

. W e NN

J{1}] =
Ji2]
Ji3]
Jl4]
J{5] =
J(6] =
Jii] =
J(8] =
J[9] =
J{10]
J(11]
J[1i2]
J[13]

COoOOoOKrHP P

oo

n #

[}

J[14] =

J{15]
J[16])

]

J[17] =

J(18]
J[19]
J(20]
J[21]
Jl22]
Jl{23]

J[24)

[l

1]

LI

]

J[25] =
J[26] =
J27] =

J(28]
J{29]
J[30]
J[31]
J(32]
J{33]
J[34]
J[35]
J(36]
J{37]

Wononon o

[ T |

.8

-
/

OOOOOOOOOOOOOOOOOOOOOOOOOOOO

.000000
.000000
.000000
.000000
.909091
.909091
.833333

33333

69231

.764706
.761905
.750000
.750000
.750000
.750000
.750000
.750000
.750000
.750000
.750000
.714286
.714286
.666667
.666667
.666667
.666667
.666667
.600000
.600000
. 600000
.555556
.555556
.500000
.428571
.400000
.333333
.166667
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VERSION 4 I(19](16) = 0.071429 ; 1 , 14
IDENTICAL I{26](16] = 0.071429 ; 1 / .4
I{10]1(3) = 0.066667 ; 1 / 15
I[26])[2) = 0.066667 ; 1 / 15
I[{10]{4] = 0.062500 ; 1 / 16
Lil43113] = 0.700000 ; 7 / 1C IEZl%LlG) = 0.062500 ; 1 / 1€
I[(i5}{1] = 0.500000 ; 6 / 12 e R
‘ I(8]1{4) = 0.058824 ; 1 / 17
I(261{24] = 0.400000 ; 2 / 5 i . -
I(16][2] = 0.058824 ; 1 / 17
I{9]1(5) = 0.250000 ; 1 / 4 _ A
: I{21](2) = 0.058824 ; 1 / 17
I[15)(8) = 0.214286 ; 3 / 14 ,
I(4](3] = 0.052632 ; 1 / 19
I(8)(3] = 0.200000 ; 3 / 15 - .
> I{11](2] = 0.047619 ; 1 / 21
I(7]1(5] = 0.166667 ; 1 / 6 _ . N
I(91(7] = 0.166667 . 1 / & I[11][3) = 0.047619 ; 1 / 21
. ! JLL OTHER EDGES = 0.000000
I[12}(5] = 0.166667 ; 1 / 6
I{12](9] = 0.166667 ; 1 / 6 Node[1l] = 14 , TI[1] = 0.700000
I(24]1(18] = 0.166667 ; 1 / 6 ~ .
Node{2! = 13, 1I[2] = 0.700000
I(12](4] = 0.142857 ; 2 / 14 _ -
Node([3] = 15, I[3] = 0.500000
I(24](19] = 0.142857 ; 1 / 7 -
Node(4] =1, 1I[4] = 0.500000
I(8][5] = 0.125000 ; 1 / 8 _ _
Node([5] = 26 , I[5] = 0.400000
I{9](8] = 0.125000 ; 1 / 8 _ -
] Node([6] = 24 , I[6] = 0.400000
I[10]1(5] = 0.125000 ; 1 / 8 _ -
2 Node(7] = 9, I[7] = 0.250000
I[10](7] = 0.125000 ; 1 / 8 -
L : Node(8] = 5, 1I(8] = 0.250000
I[10]1(%; = 0.125000 ; 1 / 8 ~ .
Node[9] = 8 , 1I[9] = 0.214286
I(12](7] = 0.125000 ; 1 / 8
Node[10] = 3, I[19] = 0.200000
I{16](4] = 0.125000 ; 2 / 16 _ _
Node([1ll] = 7 , I{ll] = 0.166667
I[19)(18] = 0.125000 ; 1 / 8 - -
Node(12] = 12, I[12] = 0.166667
I{26]{18] = 0.125000 ; 1 / 8 ~ -
. Node([13] = 18 , I[13] = 0.166667
I{3)(2) = 0.117647 ; 2 / 17 o
Node([14] = 4 , I[14] = 0.142857
I(8]1(7) = 0.111111 ; 1 / 9 .
Node[15] = 19, I[15] = 0.142857
I[26](19] = 0.111111 ; 1 / 9 N
Node(16] = 10 , I[16] = 0.125000
I[15](3]) = 0.105263 ; 2 / 19
Node(17] = 16 , I[17] = 0.125000
I(12](8] = 0.100000 ; 1 / 10 - s
Node(18] = 2, I[18] = 0.117647
I{121(10] = 0.100000 ; 1 / 10
Node[19] =21, I[19] = 0.090909
I(10](8] = 0.090909 ; 1 / 11 B
I[18](16] = 0.090909 ; 1 / 11 Node([20] = 11, I[20] = 0.047619
’ ! Node([21] = 22, 1I{21] = 0.000000

I[(24](21} = 0.090909 ; 1 / 11
I(21](18] = 0.083333 ; 1 / 12
I(24]{16] = 0.083333 ; 1 / 12
I[5][3} = 0.076923 ; 1 / 13
I(9]1(3] = 0.076923 ; 1 / 13
I[12]{3] = 0.076923 ; 1 / 13
I(16]}(12] = 0.076923 ; 1 / 13
I[18][2) = 0.076923 ; 1 / 13
I{19}({2} = 0.076923 ; 1 / 13
I{21])[19] = 0.0769%923 ; 1 / 13
I{24][2]) = 0.076923 ; 1 / 13
I{26](21] = 0.076923 ; 1 / 13
I(5](4] = 0.071429 ; 1 / 14
I{71(3] 0.071429 ; 1 / 14

/

/

I{7]104)] = 0.071429 ; 1 14
I[3}[4) = 0.071429 ; 1 14
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VERSION 4
COINCIDENTAL

C{13](1] = 0.888889 ; 8 / 9
C(14)(1] = 0.888889% ; 8 / 9
C[9](5] = 0.750000 ; 3 / 4

Cl10](7) = 0.625000 ; 5 / 8
C{15]([13] = 0.538462 ; 7 / 13
C[15][14] = 0.538462 ; 7 / 13
C{71(5] = 0.500000 ; 3 / 6
C(91(7] = 0.500000 ; 3 / 6
C{12} (5] = 0.500000 ; 3 / 6
C[12]({9) = 0.500000 ; 3 / 6
Cl22)[16] = 0.454545 ; 5 / 11
Cl8]1[7] = 0.444444 ; 4 / 9
C[18)} (7} = 0.428571 ; 3 / 7
C{22](5] = 0.428571 ; 3 / 7
cl221(9] = 0.428571 ; 3 / 7
C{12]1(2] = 0.416667 ; 5 / 12
C(8](5] = 0.375000 ; 3 /7 8
c{9]1(8] = 0.375000 ; 3 / 8
C[(10] (5] = 0.375000 ; 3 / 8
C[10][9] = 0.375000 ; 3 / 8
Cf{12] (7} = 0.375000 ; 3 / 8
C{101([8] = 0.363636 ; 4 / 11
c{22114) = 0.357143 ; 5 / 14

Cf4)[2] = 0.333333 ; 6 / 18
Ci{16]1[7) = 0.333333 ; 4 / 12
cf{18}f{1] = 0.333333 ; 3/ ¢
c{18][10) = 0.333333; 3/ 9
Cf22][7] = 0.333333; 3/ 9
c[221([12] = 0.333333 ; 3/ 9
C[l6](4] = 0.312500 ; 5 / 16
C[71(2] = 0.307692 ; 4 / 13
C(12]1(3] = 0.307692 ; 4 / 13
C[21][10] = 0.307692 ; 4 / 13
c{12](8] = 0.300000 ; 3 / 10
C[12]1[10] = 0.300000 ; 3 / 10
c[(1i8][(13)] = 0.300000 ; 3 / 10
C[18](14) = 0.300000 ; 3 / 10
C[{21) (5] = 0.300000 ; 3 / 10
Cl[21}{9] = 0.300000 ; 3 / 10
C[11)[8) = 0.294118 ; 5 / 17
C[11]([10]) = 0.294118 ; S5 / 17
Ci{71104) = 0.285714 ; 4 / 14
C(11]({5] = 0.285714 ; 4 / 14
C[11](9] = 0.285714 ; 4 / 14
C({16](10] = 0.285714 ; 4 / 14
C(71(1] = 0.272727 ; 3 / 11
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C{16]1(5] = 0.272727 ; 3 / 11
Ccl1l6){9] = 0.272727 ; 3 /7 11
cfe2]({8] = 0.272727 ; 3 / 11
c{221{10] = 0.272727 ; 3 s it
(101 (2] = 0.266667 ; 4 / 15
Cl10][3] = 0.266667 ; 4 / 15
C[4](3] = £.263158 ; 5 / 13
Cl5]1(2] = 0.250000 ; 3 / 12
€l9}f2) = 0.250000 ; 3 / 1z
C[10]{4] = 0.250000 ; 4 / 16
Cl111[7] = 0.250000 ; 4 / 16

Cl12][11] = 0.250000 ; 4 / 16
C{13)(7] = 0.250000 ; 3 s 12
C{141(7] = 0.250000 ; 3 7/ 12
C{18]{15] = 0.250000 ; 3 / 12
C(211(7] = 0.250000 ; 3 / 12

Cc{21}(12] = 0.250000 ; 3 / 12
C{22)([18] = 0.250000 ; 2 / 8
Ccl22}{21] = 0.250000 ; 3 / 12

C{24](3] = 0.250000 ; 3 / 12
C{31(2] = 0.235294 ; 4 / 17

C[101(1] = 0.230769 ; 3 / 13
C{16](3] = 0.222222 ; 4 / 18
C{24)({10) = 0.222222 ; 2 / 9
C{7}11(3) = 0.214286 ; 3 / 14

Cl12)[4] = 0.214286 ; 3 / 14

C(13)(10] = 0.214286 ; 3 / 14
C{141[10] = 0.214286 ; 3 / 14
Cl15](7] = 0.214286 ; 3 / 14
C(18](4] = 0.214286 ; 3 / 14
Cl21](8] = 0.214286 ; 3 / 14
Cl22]1([2] = 0.214286 ; 3 / 14
C{26]1{3] = 0.214286 ; 3 / 14
C{21](11] = 0.210526 ; 4 / 19
C{16]){8] = 0.200000 ; 3 / 15
cli8)[8] = 0.200000 ; 2 / 10
C(22]{3} = 0.200000 ; 3 / 15

cl[26}[24) = 0.200000 ; 1 / 5
C[11])([3] = 0.190476 ; 4 / 21

ci8l[2) = 0.187500 ; 3 / 16
C[15)(10] = 0.187500 ; 3 / 16
C[19])([11} = 0.187500 ; 3 / 16
c(18]}(16] = 0.181818 ; 2 / 11
C(261(10] = 0.181818 ; 2 / 11
C(8]1(4] = 0.176471 ; 3 / 17

ci(161(2] = 0.176471 ; 3 / 17
Cl22]1([11] = 0.176471 ; 3 / 17
C[4)([1] = 0.166667 ; 3 / 18
Cl[211(3) = 0.166667 ; 3 / 18
Cl24]1(5) = 0.166667 ; 1 / 6
C[241(9] = 0.166667 ; 1 / 6




C[13](4] = 0.157895 ; 3 / 19
C[{14)(4] = 0.1578%5 ; 3 / 19
Cc{21](4) = 0.157895 ; 3 / 19

C[5]1(3] = 0.153846 ; 2 / 13
C[911[3] = 0.153846 ; 2 / 13
cf{l6][12] = 0.153846 ; 2 / 13
C[(19]1{2] = 0.153846 ; 2 / 13

C(5](4] = 0.142857 ; 2 / 14
C(8]([1] = 0.142857 ; 2 / 14
C(9)[(4) = 0.142857 ; 2 / 14
Ccl(111([2) = 0.142857 ; 3 / 21
C{15](4] = 0.142857 ; 3 / 21
C(15](8] = 0.142857 ; 2 / 14
C(l6][11] = 0.142857 ; 3 / 21
c(18]1 (3] = 0.142857 ; 4

~1

2/
C{18}[5] = 0.142857 ; 1 /
c{18][9] = 0.142857 ; 1 / 7
C[(8]1[3]) = 0.133333 ; 2 / 15
C[13](8] = 0.133333 ; 2 / 15
C(14])(8] = 0.133333 ; 2 / 15
Cl24](11] = 0.133333 ; 2 7 15

Cc(11j[4] = 0.125000 ; 3 / 24
Cl16]){1] = 0.125000 ; 2 / 16
Cl[19](5] = 0.125000 ; 1 / 8
C({19][9) = 0.125000 ; 1 / 8

C[211(16] = 0.125000 ; 2 / 16
C(24]{7] = 0.125000 ; 1 / 8
cl241[12] 0.125000 ; 1 / 8
C(24]) (22} 0.125000 ; 1 / 8
c{26][5] = 0.125000 ; 1 /
Cl26]1[9) = 0.125000 ; 1 /
c(2]{1] = 0.117647 ; 2 / 1
C(16](13] 0.117647 ; 2 / 17
C(16](14] 0.117647 ; 2 / 17
C(21](2] = 0.117647 ; 2 / 17
C[26][11) = 0.117647 ; 2 / 17
c(3]({1] = 0.111111 ; 2 / 18
cl(13](2]) = 0.111111 ; 2 / 18
c(14](2) = 0.111111 ; 2 / 18
c(18]{12] = 0.111111 ; 1/ 9
C[131(3] = 0.105263 ; 2 / 19
C[14]1(3] = 0.105263 ; 2 / 19
Cl[15](3] = 0.105263 ; 2 / 19
C(16][15] = 0.105263 ; 2 / 19
C(14](13) = 0.100000 ; 1 / 10
Cc(15]1(2} = 0.100000 ; 2 / 20
C[19]) (7] = 0.100000 ; 1 / 10
C[19](12] = 0.100000 ; 1 / 10
€[22]{19] = 0.100000 ; 1 / 10
cf24]) (1) = 0.100000 r 1 / 10
Cl[24](8] = 0.100000 ; 1 / 10

8
8
7

"

121

C{26] (7] = 0.100000 ; 1 / 10
C[26][12] = 0.100000 ; 1 / 10
c{26}(22] = 0.100000 ; 1 / 10
C(51[1}] = 0.090909 ; 1 s/ 11
C(91(1] = 0.0%0909 ; 1 / 11
C{24]1{13] = 0.090909 ; 1 / 11
C[24](14) = 0.090909 ; 1 / 11
C{15](11) = 0.086957 ; 2 / 23
C[13](5] = 0.083333 ; 1 /s 12
Cf{13}(9i = 0.083333 ; 1 s 12
Cl(14](5] = 0.083333 ; 1 / 12
C[14]([9]) = 0.083333 ; 1 / 12
C[15]1(1] = 0.083333 ; 1 / 12
C{13](1] = 0.083333 ; 1 s/ 12
C[19])(8] = 0.083333 ; 1/ 12
C{19][10] = 0.083333 ; 1 / 12
C[26]{1] = 0.083333 ; 1 / 12
C(26] (8] = 0.083333 ; 1 / 12
Cf{12] (1] = 0.076923 ; 1 / 13
c[i8]{2] = 0.076923 ; 1 / 13

C[19])([13] = 0.076923 ; 1 / 13
C[19](14] = 0.076923 ; 1 / 13
Cl[22)[1] = 0.076923 ; 1 / 13

C[24][15] = 0.076923 ; 1 / 13
C[26][13) = 0.076923 ; 1 / 13
C[26](14] = 0.076923 ; 1 / 13
C(131{12] = 0.071429 ; 1 / 14
C[14]([12] = 0.071429 ; 1 / 14

C[15](5] = 0.071429 ; 1 / 14

C{15](9] = 0.071429 ; 1 / 14

C[22][13) = 0.071429 ; 1 / 14
C(221{14] = 0.071429 ; 1 / 14
C[19][15] = 0.066667 ; 1 / 15
C[24](4] = 0.066667 ; 1 / 15

C{26)[15] = 0.066667 ; 1 / 15
C{15][12] = 0.062500 ; 1 / 16
C[19]{3] = 0.062500 ; 1 / 16

Cl[21])[1] = 0.062500 ; 1 / 16

C[22](15]) = 0.062500 ; 1 / 16
C(18])[11] = 0.058824 ; 1 / 17
Cc{19]([(4] = 0.058824 ; 1 / 17

C[21}(13] = 0.058824 ; 1 / 17
C[21](14] = 0.058824 ; 1 / 17
C[26] (4] = 0.058824 ; 1 / 17

C[21](15] = 0.052632 ; 1 / 19
Cr11)[1] = 0.047619 ; 1 / 21

C(131([11} = 0.045455 ; 1 / 22
C[14])({11] = 0.045455 ; 1 / 22
JLL OTHER EDGES = 0.000000




Node (1]
Node (2]
Node [3]
:de[4]
Node[5]
Node (6]
Node [7}
Node [8]
Node [9]
Node [10])
Node [11]
Node [12]
Node [13]
Node[14]
Node[15]}
Node [16)
Node [17]
Node [18]
Node {19]
Node {2Q]
Node(21]

13, C{1] = 0.888889
1, C[2] = 0.888889
14, C[3) = 0.888889
9, C[4] = 0.750000

=5, C{5] = 0.750000

oo

10, C[6] = 0.625000

7, C{7] = 0.625000

= 15 , C[8] = 0.538462

=12, C[9] = 0.500000
=22, C[10] = 0.454545
=16 , C[11l] = 0.454545
=8, C[12] = 0.444444
=18, C{13] = 0.428571
=2, C[l4] = 0.416667
=4, Cf{15]) = 0.357143
=3, Cll6] = 0.307692
=21, C[17] = 0.307692
=11, C{18] = 0.294118
=24, C[19] = 0.250000
=26, C[20] = 0.214286
19, cCIl21] = 0.187500
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VERSION 4
COMPOSITE

9] = 1.000000 ; 4 / 4
J[l3

[5]

J{l) = 0.888889 ; 8 / 9
J[14]{1] = 0.888889 ; 8 / 9
J{14](13] = 0.800000 ; 8 / 10

J[10]{7] = 0.750000 ; 6 / 8
J{71[5] = 0.666667 ; 4 / 6
JI9][7] = 0.666667 ; 4 / 6
J[121(5] = 0.666667 ; 4 / &
J[12][9] = 0.666667 ; 4 / 6

J[26]1(24] = 0.600000 ; 3 / 5
J[15](1] = 0.583333 ; 7 / 12

J[8]1[7] = 0.555556 ; 5 / 9
J[15]{13] = 0.538462 ; 7 / 13
J[(15][14] = 0.538462 ; 7 / 13
J(8]([(5] = 0.500000 ; 4 / 8
J[9])[8) = 0.500000 ; 4 / 8
J{10} (5] = 0.500000 ; 4 / 8
J{10](9) = 0.500000 ; 4 / 8
J{12]1[7] = 0.500000 ; 4 / 8
J[10][8] = 0.454545 ; 5 / 11

J(22]1[16] = 0.454545 ; 5 / 11

J{16){4) = 0.437500 ; 7 / 16
J[18]([7]) = 0.428571 ; 3 / 7
J(22]1 (5] = 0.428571 ; 3 / 7
J(22]{9] = 0.428571 ; 3 / 7
J(121({2] = 0.416667 ; 5 / 12
J(12][8] =~ 0.400000 ; 4 / 10

J{12][10] = 0.400000 ; 4 / 10
J[12]1(3] = 0.384615 ; 5 / 13
J[7114) = 0.357143 ; 5 / 14

J(12][4] = 0.357143 ; 5 / 14
J[15] (8] = 0.357143 ; 5 / 14
J{22][4] = 0.357143 ; 5 / 14

J[3]{2} = 0.352941 ; 6 / 17
J{4)[2] = 0.333333 ; 6 / 18
J[8] (3] = 0.333333 ; 5 / 15
J[10}[3}] = 0.333333 ; 5 / 15
J(16](7) = 0.333333 ; 4 / 12
J(183({1] = 0.333333 ; 3/ ¢
J[18](10]) = 0.333333 ; 3/ 9
J(22])[7] = 0.333333 ; 3/ 9
J{22][(12] = 0.333333; 3/ 9
J(4][3] = 0.315789 ; 6 / 19
J{10)[4] = 0.312500 ; 5 / 16
J(71(2] = 0.307692 ; 4 / 13
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J[211{10] = 0.307692 ; 4 / 13
J{18](13] = 0.300000 ; 3 / 1C
J{i8]{14] = C.300000 ; 3 , .C

f21] (s} = 0.300000 ; 3 / 10
J{21}{9] = 0.300000 ; 3 / 10
J(111(8] = 0.294118 ; 5 / 17
Jritjiie

] = 0.294118 ; 5 /7 17
J{7](3] = 0.285714 ; 4 /. 14
J(11]({%] = 0.285714 ; 4 / 14
J{111(9] = 0.285714 ; 4 / 14
J[16][{10] = 0.285714 ; 4 / 14
J{71(1] = 0.272727 ; 3 / 11
J{16]([5) = 0.272727 ; 3 11
J[161 (91 = 0.272727 ; 3 / 11
J(18] [16] = 0.272727 ; 3 / 11
J[22]1(8] = 0.272727 ; 3 / 11
J(221(10] = 0.272727 ; 3 / 11
J[10][2] = 0.266667 ; 4 / 15
J[5](2] = 0.250000 ; 3 / 12
J{91(2] = 0.250000 ; 3 / 12
J[11]([{7) = 0.250000 ; 4 / 16
J{12](11] = 0.250000 ; 4 / 16
J{13]1 (7] = 0.250000 ; 3 / 12
J(141 (7] = 0.250000 ; 3 / 12
J[18][15] = 0.250000 ; 3 / 12
J{21][(7] = 0.250000 ; 3 / 12
J{211{12} = 0.250000 ; 3 / 12
J[221(18] = 0.250000 ; 2 / 8

J[{22]({21] = 0.250000 ; 3 / 12
J[24] (3] = 0.250000 ; 3 s/ 12
J[11} (3] = 0.238095 ; 5 / 21

J(8][4] = 0.235294 ; 4 / 17
J{16] (2] = 0.235294 ; 4 / 17
J(5}1[3] = 0.230769 ; 3 / 13
J[9]1[3] = 0.230769 ; 3 / 13
J[10} (1] = 0.230769 ; 3 / 13
J[16]([12] = 0.230769 ; 3 / 13
J{191(2] = 0.230769 ; 3 / 13
J[16][3] = 0.222222 ; 4 / 18
J[24])(10] = 0.222222 ; 2 / 9
J{5][4] = 0.214286 ; 3 / 14

J(91[4] = 0.214286 ; 3 / 14
J(13](10] = 0.214286 ; 3 / 14
J(14]){10] = 0.214286 ; 3 / 14
J(15]1 (7} = 0.214286 ; 3 / 14
J[18][4] = 0.214286 ; 3 / 14
J[21]1 (8] = 0.214286 ; 3 / 14
J(221(2} = 0.214286 ; 3 / 14
J[26][3) = 0.214286 ; 3 / 14
J[15]{3] = 0.210526 ; 4 / 19

J{21]1{11] = 0.210526 ; 4 / 19




J(16]1 (8] = 0.200000 ; 3 / 15
J[1is81(8] = 0.200000 ; 2 / 10
J{22]1(3]1 = 0.200000 ; 3 / 15
S{11]1(2} = 0.190476 ; 4 / 2
J(81{2] = 0.187500 ; 3 / 16
J!13][10] = 0.187500 ; 3 / 16
J{i3;{11l} = 2.187500 ; 3 / 16
J{211(16] = 0.187500 ; 3 / 16
J(26]1({10] = 0.181818 ; 2 / 11

J(211(2] = 0.176471 ; 3 / 17
J[22]1(11] = 0.176471 ; 3 / 17
J(4]1(1] = 0.166667 ; 3 / 18
J(211(3] = 0.166667 ; 3 / 18
J(24]1(5] = 0.166667 ; 1 / 6
J[24](9) = 0.166667 ; 1 / 6
J(241(18] = 0.166667 ; 1 / 6

J(131(4] = 0.1578%5 ; 3 / 19
J(141(4]1 = 0.157895 ; 3 / 19
J(211(4] = 0.157895 ; 3 / 19
J(18](2] = 0.153846 ; 2 / 13

J{81(1] = 0.142857 ; 2 / 14
J[15] (4] 0.142857 ; 3 / 21
J{16][11] = 0.142857 ; 3 / 21
J(18]1([3] = 0.142857 ; 2 / 14
J(18]1(35] = 0.142857 ; 1 / 7
J[18]11[9] = 0.142857 ; 1 / 7
J{241(19) = 0.142857 ; 1 / 7
J{131(8] = 0.133333 ; 2 / 15
J(141(81 = 0.133333 ; 2 / 15
J(24]1(11] = 0.133333 ; 2 / 15
J[11)[4) = 0.125000 ; 3 / 24
J{1l6][1] = 0.125000 ; 2 / 16
J[19] (5] = 0.125000 ; 1 / 8
J(191(9] = 0.125000 ; 1 / 8
J(1%1(18] = 0.125000 ; 1 / 8
J(241(7] = 0.125000 ; 1 / 8
J(24]1{12] = 0.125000 ; 1 /
J(24][22) = 0.125000 ; 1 /
J[26]) (5] = 0.125000 ; 1 / 8
J[(261(9] = 0.125000 ; 1 / 8

8
8

J(26](18]) = 0.125000 ; 1 / 8

J(21(1] = 0.117647 ; 2 / 17

J(161(13] = 0.117647 ; 2 / 17

J(16]1(14] = 0.117647 ; 2 / 17

J(261(11] = 0.117647 ; 2 / 17
0 /

J(3]1([11 = 0.111111 ; 2 18
J{13](2] = 0.111111 ; 2 / 18
J(14](2] = 0.111111 ; 2 / 18
Jrisj(i2) = 0.111111 ; 1/ 9
J{261(19] = 0.111111 ; 1 / 9
J{131({3] = 0.105263 ; 2 / 19
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J{1411(3] = 0.105263 ; 2 / 19
J[16)(15] = 0.105263 ; 2 / 19

J[15] (2] = 0.100000 ; 2 / 20
J(191 (7! = 0.100000 ; 1 / 10
J[19]f112] = 0.100000 ; 1 / 10
J{22]1[18) = 0.1000C0 ; 1 / 10
J{24](1] = 0.100000 ; 1 / 10
J(24](8] = 0.100000 ; 1 s 10
J{26]1{7] = 0.100000 ; 1 / 10
J{26][12] = 0.100000 ; 1 / 10
J{26]{22] = 0.100000 ; 1 / 10
J(5](1] = 0.090%809 ; 1 s/ 11
J{9][1] = 0.090909 ; 1 / 11
J[24])[13] = 0.090909 ; 1 / 11
J[24][14] = 0.090909 ; 1 / 11
J[24](21] = 0.090909 ; 1 / 11
J[15}[11] = 0.086957 ; 2 / 23
J{13] (5] = 0.083333 ; 1 /7 12
J(13](9] = 0.083333 ; 1 / 12
J[14] (5] = 0.083333 ; 1 / 12
J[14])[9) = 0.083333 ; 1 / 12
J[19][1] = 0.083333 ; 1 / 12
J[19] (8] = 0.083333 ; 1 / 12

J[19){10] = 0.083333 ; 1 / 12

J(211(18] = 0.083333 ; 1 / 12
J[24](16] = 0.083333 ; 1 / 12
J(26] (1] = 0.083333 ; 1 / 12
J{26](8] = 0.083333 ; 1 / 12
J[12][1) = 0.076923 ; 1 / 13
J[19][13} = 0.076923 ; 1 / 13
J[{19](14] = 0.076923 ; 1 / 13
J[217[19] = 0.076923 ; 1 / 13

J{22] (1] = 0.076923 ; 1 / 13
J(24)([2] = 0.076923 ; 1 / 13

J[24](15] = 0.076923 ; 1 / 13
J[26]1(13] = 0.076923 ; 1 / 13
J[26]1[14] = 0.076923 ; 1 / 13
J[26)(21) = 0.076923 ; 1 / 13
J[13]1(12] = 0.071429 ; 1 / 14
J{14]1([12] = 0.071429 ; 1 / 14
J[15)[5] = 0.071429 ; 1 / 14

J{15)(9] = 0.071429 ; 1 / 14

J[19](16] = 0.071429 ; 1 / 14
J[22](13] = 0.071429 ; 1 / 14
J[(22)(14]) = 0.071429 ; 1 / 14
J[26][16] = 0.071429 ; 1 / 14
J(19][15} = 0.066667 ; 1 / 15
J(24)({4) = 0.066667 ; 1 / 15

J[261(2] = 0.066667 ; 1 / 15

J[26])[15] = 0.066667 ; 1 / 15
J({15](12] = 0.062500 ; 1 / 16




J[19](3]1 = 0.062500 ;
J{211({1} = 0.062500 ;
J(22}(15] = 0.062500
J{18]1(11] = 0.058824
J(19]1(4] = 0.058824 ;
J{21][(13] = 0.058824
J[21])[14) = 0.058824
J{26]1[4] = 0.058824 ;
J[21}[15] = 0.052832
J(11]{1}) = 0.047619 ;
J{13)[11] = 0.045455
J[14][11]) = 0.045455

JLL OTHER EDGES = 0.000000

1

/

16

1/ 16
; 1/ 16
;1 /17

1/ 17
s 1/ 15
; 1/ 17

1/ 17
; 1/ 19

1/ 21
; 1/ 22
i 1/ 22

Node(l] = 9 , J(1] = 1.000000
Node[2] = 5, J[2] = 1.000000
Node[3] = 13 , J([3] = 0.888889
Node({4] = 1, J[4] = 0.888889
Node[5] = 14 , J[5] = 0.888889
Node[6] = 10 , J[6] = 0.750000
Node{7] = 7, JI[7] = 0.750000
Node[8] = 12, J[8] = 0.666667
Node[9] = 26 , J[9] = 0.600000
Node[10] = 24 , J[10} = 0.600000
Node([11l] = 15, J([11] = 0.583333
Node([12] = 8 , J[12] = 0.555556
Node(13] = 22 , J{13] = 0.454545
Node[14] = 16 , J[14] = 0.454545
Node(15] = 4 , J(15] = 0.437500
Node(16] = 18 , J[16] = 0.428571
Node[17] = 2 , J[17] = 0.416667
Node (18] = 3 , J[18] = 0.384615
Node[19] = 21 , J[19] = 0.307692
Node(20] = 11 , J[20] = 0.294118
Node[21] = 19 , J[21] = 0.230769
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APPENIX F
HISTOGRAMS

There is one figure in this appendix for each dimension of each experimental
and random version. Each figure contains two histograms. The first histogram
shows how many edges are added to the graph in each interval of the Jaccard co-
efficient. In the second histogram, the column in each Jaccard coefficient interval
shows how many nodes have their largest incident edge in that interval.

In the first histogram, the total column height in each interval shows the num-
ber of edges that have weights in that interval. The column is divided into two parts.
The black part, labeled “Between Newly Connected Nodes,” shows the numbers of
edges that are incident on nodes that had no incident edge in a higher threshold
interval. The gray part, labeled “Between Previously Connected Nodes,” shows the
numbers of edges that are incident on nodes that did have an incident edge in a
higher threshold interval.

The abscissae of the histograms are labeled with the Jaccard coefficient de-
creasing from left to right. The histograms are divided into intervals of 0.05. In gen-
eral, the data included in an interval are strictly less than the upper limit of the in-
terval and greater than or equal to the lower limit. There are two exceptions: data
in the uppermost interval are less than or equal to unity; data in the lowermost in-
terval are strictly greater than zero.
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B Between Previously Connected Nodes

[} Between Newly Connected Nodes

8 A

253 possible edges
57 nonzero edges

n

Number of Edges
3
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Figure F.1 - Version 1, identical Bounds
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Figure F.2 - Version 2, Identical Bounds
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Figure F.3 - Version 3, identical Bounds
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Figure F.4 - Version 4, identical Bounds
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Figure F.5 - Version R20, identical Bounds
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Figure F.6 - Version R40, identical Bounds
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Figure F.7 - Version 1, Coincidental Bounds
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Figure F.9 - Version 3, Coincidental Bounds
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136




] Between Previously Connected Nodes
1 20‘: Il Between Newly Connected Nodes
100
. 190 possible edges
g ] 140 nonzero edges
> 80 1
‘é |
£ 60
3 4
Z .
40-
20
0 | 1 ¥ T I | 1 | 1 4 I | 1 =
T3383Rs83883238383258°
o o o o o o o o o (=)
Decreasing Modified Jaccard Coetfticient (C(m,n)) Threshoid
(a) Edges Added at Each Threshold
12
20 nodes total
10
0
g 8
S 6
i,
2
2
o 1 T 1 I ] ] V 1 T 1 | T 1
—mmgomnmommm*mmmwm—mo
m . » h » 0 - m K Q . m . N » -~ - o
6°6°6°6°6°6°c°c°s°c
Decreasing Modified Jaccard Coefficient (C(m.n)) Threshoid

(b) Newly Connected Nodes at Each Threshold

Figure F.11 - Version R20, Coincidental Bounds
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Figure F.12 - Version R40, Coincidental Bounds
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Figure F.13 - Version 1, Composite Bounds
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Figure F.14 - Version 2, Composite Bounds
140




. B Between Previously Connected Nodes

120 N [l Between Newly Connected Nodes

4 666 possible edges

603 nonzero edges

Number of Edges

] ko o
- N W OWLNWOWOOLOLWBLITOLNWLA~W O
NoRVoNoW®CoWo ToNoNoc -~ o @
o o o o o o o o o o
Decreasing Jaccard Coefficient (J(m,n)) Threshoid
(a) Edges Added at Each Threshold
12
37 nodes total
10
7]
g 8
S 6
£ .
3
. | |
0+ . I.I T 1
L o n - o
8283858385838383235%8
o o (<) o () o o (=) o o

Decreasing Jaccard Coefficient (J(m,n)) Threshold
(b) Newly Connected Nodes at Each Threshold

Figure F.15 - Version 3, Composite Bounds
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